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Abstract. This study utilizes Logitec HD webcam C270 as a computer vison-based 
precision monitoring system to optimize the performance of cassava chips drying 

machines. Cassava chips processed from optimal drying is later utilized as raw ma-

terial for quality modified cassava flour (MOCAF). The purpose of this study is to 

optimize the selection of textural features (TFs) in computer vision to predict the 
water content of cassava chips during the drying process by applying a combination 

of optimization methods, commonly referred as hungry roach infestation optimiza-

tion (HRIO) algorithm and modeling methods, which is artificial neural network 

(ANN). Multi-objective optimization (MOO) was performed with two objectives, by 
maximizing the accuracy of the predicted water content of cassava chips and by min-

imizing the number of feature subset of a total of 260 TFs. The test results indicate 

that the best feature subset depict the 6 TFs such as grey energy, hue energy, red 

entropy, saturation(HSV) contrast, green homogeneity, and grey correlation. The best 
feature subset has been tested as ANN input to predict the water content of cassava 

chips during the drying process (presenting the expected results), marked with the 

achievement of R2 values between real data and predictive data of 0.98. The results 

of the measurement of mean square error (MSE) on the training data are 0.000056 

and the MSE value in the validation data of 0.000098. 

Keywords: Cassava chips, computer vision, drying process. 

1 Introduction 

Cassava products (Manihot escullenta Crantz) have been commonly processed into 

food (edible) products, such as: fermented, steamed, fried cassava, and flour as the raw 
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ingredient for cake or bread making. There are two types of flour made from cassava, 

which are cassava starch and cassava flour [1]. Cassava flour has an advantage over 

tapioca flour (which only uses cassava starch) containing protein, fat, calcium, phos-

phorus and iron. However, another disadvantage of processing cassava starch is the 

high nitrogen content, resulting a brownish color when heated during the drying process 

[2]. To overcome this, a refinement process is carried out to modify the processing of 

cassava starch, commonly referred as modified cassava flour (MOCAF). The develop-

ment of the diversification of cassava into MOCAF provides a promising attempt to 

substitute the utilization of wheat flour [3]. 

In general, the drying process becomes a very important stage in handling agricul-

tural products [4]. This process is also included in the process of making flour, to de-

termine the quality of the produced flour [5]. Drying is a process to reduce the water 

content in an agricultural material; thus, the end result is expected to contain with opti-

mal water content as the subsequent. Drying also aims to increase the shelf life of food 

products [6]. Drying is the process of heat and material mass transfer [7]. The process 

of transferring heat occurs through a conduction process, where heat is transferred into 

the material by transferring heat by conduction reaction. The water content in the ma-

terial comes out and evaporates causing the displacement of the material. Drying 

method is suggested in processing food products by utilizing artificial drying due to its 

numerous advantages [8]. Such advantages occur in artificial drying as the process in-

volves controlling temperature and air velocity to be optimally adjusted to produce a 

drying process (faster, randomly, hygienically, and able to maintain the nutritional con-

tent of food products). One example of an artificial drying tool is a rack-type drying 

machine [9], working with the help of heat which can be optimally adjusted and easily 

operated. The shelves in the drying machine provide holes for the channel to distribute 

hot air to the material. The process of distributing hot air to the material will cause the 

loss of water content in the dried material to run optimally.  

The expected quality of cassava chips determines the quality of the process of mak-

ing cassava starch at MOCAF. To determine the quality of cassava chips, it is necessary 

to test physical and chemical characteristics by performing the conventional tests re-

quiring laboratory work with a considerable amount of time. In the drying process, sev-

eral problems often arise, such as the difficulty of controlling temperature and humid-

ity, the presence of microbial contamination, and also the dependence on local weather 

conditions.  

Aghbashlo et al. [10] employed the computer vision method to monitor the quality 

of food products during the real-time drying process. This method is proven to be suit-

able for observing changes in food products during drying process for revealing the 

mechanical, sensory, and nutritional characteristics. The computer vision method that 

has been developed includes real-time monitoring in terms of shape, size, color, and 

texture. With various advantages of computer vision, this method can be further devel-

oped for online and real-time monitoring processes to regulate various control param-

eters to produce desired products. With the existence of a monitoring system, setting 

the characteristics of drying products can be evaluated during the drying process to 

meet the expected standards. Dutta et al. [11] applied computer vision as a non-destruc-

tive sensing method to identify the presence of acrylamide in potato chips. The first 

step in image processing involves the automatic separation of potato chips from the 

background, which is then followed by extraction of statistical data and textural features 
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(TFs) of the previously separated object image. The results indicate a high level of ac-

curacy of more than 94%. Baigvand et al. [12] examined the application of computer 

vision for the grading process with the dried fig objects. The results indicate an accu-

racy of more than 95.2%. Benalia et al. [13] developed an automatic system based on 

computer vision to improve the quality of system control in sorting the dried figs ob-

jects. In this study, a color space model was utilized including CIE XYZ, CIE Lab, and 

Hunter Lab. The model was utilized to measure the browning index of each fruit with 

accuracy of 99.5%. Romani et al. [14] applied computer vision to analyze digital im-

ages especially in the external visual appearance of potato chips products during the 

frying process. The result indicates a high correlation with of R2> 0.962 by applying 

computer vision (RGB color) with conventional tools (colorimeter) to evaluate the 

physical properties of potato chips during the frying process. Yadollahinia and Ja-

hangiri [15] developed thin-layer dryer devices with computer vision applications em-

ploying image analysis software to monitor the drying process of cut potato products. 

The results present that computer vision systems have been successful in monitoring 

the period of shrinkage that occurs in cut potatoes during the drying process.  

In the field of agriculture and biological engineering, most researchers have devel-

oped various intelligent modeling methods such as artificial neural network (ANN) to 

analyze various food processing [16]. Khazaei et al. [17] examined the modeling 

method for predicting the drying process in grapes with system control and online mon-

itoring. Computer vision is employed to measure weight shrinkage in grapes during the 

drying process for the production of raisins. ANN was developed as an intelligent mod-

eling method to model the drying process of grapes by utilizing a hot air dryer. The best 

ANN model is obtained by using a three-layer structure with R2 value of 0.99947 for 

training data and R2 of 0.99952 for testing data. For the food quality control sector, 

ANN has been proven to be successfully implemented to predict the quality of agricul-

tural raw products [18-20]. Azadbakht et al. [21] examined the application of ANN for 

energy analysis in fluidized bed dryers for cut-potato products. The results of the sta-

tistical analysis demonstrate that ANN is applicable for drying process to model energy 

use in the food industry. Wu et al. [22] have successfully developed the latest intelligent 

control system based on analysis of digital images of tobacco leaves in real-time mode 

to monitor the physical characteristics of tobacco leaves applying an ANN model.  

ANN modeling performance can be improved by adding an input parameter selec-

tion process. The selection of suitable input parameters will result in ANN modeling 

with better accuracy, commonly recognized as feature selection. Principally, feature 

selection method selects optimal feature subset that can maximize the prediction accu-

racy of ANN. Irrelevant features demonstrate high performance when combined with 

other features [23]. Several previous studies have proven the advantages of utilizing 

natural-inspired algorithms as a feature selection method [24-28]. Hendrawan and Al 

Riza [29] have successfully implemented the hungry roach infestation optimization 

(HRIO) method to select features as ANN inputs to predict the water content of biolog-

ical objects. The results of the research developed by Hendrawan and Murase [28] also 

demonstrate the superiority of the HRIO method compared to other optimization meth-

ods such as genetic algorithms, discrete particle swarm optimization, dan simulated 

annealing.  

The conventional method through direct measurement of the moisture content in the 

material (during the drying process) is required to compare the models with the 

Optimized Digital Webcam with Hungry Roach Infestation Optimization             253



 

computer vision method. The principle of monitoring on the drying machine control 

system is to stop the drying process when the water content of the material has reached 

the desired optimum point. The application of computer vision technology has been 

successful and developed in various fields of food products for inspection, classifica-

tion, and product evaluation. Therefore, the purpose of this study is to model the image 

feature to predict the water content of cassava chips during the drying process by em-

ploying ANN modeling and to optimize the selection process for achieving the best 

image feature-subset by HRIO. 

2 Materials and Methods 

Cassava was obtained directly from one farm in the area of Malang, East Java, Indone-

sia. Five hundred samples of cassava chips with various moisture content conditions 

were utilized in this study. As a method for manipulating physiological conditions, each 

sample of cassava chips was regulated by its water content through various durations 

of drying. The moisture content of a material can be defined as the percentage of water 

contained in the sample material from its initial weight [30]. The drying experiment 

was carried out using tray dryer as illustrated in Figure 1, where the dryer can be con-

trolled in a temperature range between 50-70 oC. Before the study began, cassava was 

washed, peeled and thinly cut into 1 mm thickness chips by using a mechanical slicing 

machine. 

 
Fig. 1.  Modified cassava chips tray dryer using computer vision and ANN. 

 

The first stage of the research was conducted by performing digital image capture, 

where images of cassava chips were seized by a digital camera (Logitec HD Webcam 

C270, Japan) and were placed at an altitude of 300 mm from the surface of the material 

and were connected directly via USB port on a central computer by using an Intel core 

i7 processor. Digital cameras used for digital image processing provided a choice of 
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image formats in the form of BMP. Digital images were captured by using the optimal 

resolution of 1280 × 720 and were stored on the computer via USB port in BMP format. 

Uniform lighting conditions on all object surfaces become important factors in com-

puter vision [31] to optimally control the light distribution. The lighting source com-

monly employs the two 22W lamps (EFD25N / 22. National Corporation, Japan). The 

light intensity on the surface of the cassava chips object is controlled to be uniform at 

a value of 300 lux during the digital image capture process. During the drying process, 

the digital image of cassava chips is carried out continuously using self-built computer 

vision software. During the drying process until the weight of cassava chips reaching a 

constant condition, the lost water weight on cassava chips objects is measured by using 

digital scales every one minute. At the same time, digital shooting is also performed in 

every one minute. After the drying process is completed, 500 image data with various 

water content statuses (range 1 = wet; range 2 = semi-dry; and range 3 = optimum dry) 

are prepared for the next process of image analysis with software specifically built by 

Visual Basic 6.0 to observe the water content of cassava chips. Image parameters meas-

ured by this software are TFs for each digital image data. 

After the data from the image analysis is obtained, the next step to perform is mod-

eling. Data modeling in this study applies back-propagation neural network (BPNN) to 

model TFs as input with cassava chips water content as output. Supervised prediction 

is utilized to predict the water content of cassava chips by using digital image parame-

ters. This research is related to the measurement of the optimal dryness level of cassava 

chips during the drying process by comparing two analytical methods of image analysis 

and conventional measurement of moisture content. The next step is continued to opti-

mize the image parameters as modeling inputs. The optimization process is related to 

the feature selection process to select the most accurate combination of image parame-

ters to predict the water content of cassava chips. The feature selection method employs 

a nature-inspired algorithm approach (HRIO method). Multi objective optimization 

(MOO) utilized in this study includes two optimization objectives for minimizing the 

value of mean square error (MSE) and minimizing the number of feature subset [32]. 

Thus, the formula for the fitness value used is as follows: 
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where MSE(x) is the mean square error for validation data from BPNN using selected 

feature-subset x input; IF(x) is the number of image parameters selected in feature-sub-

set x; ft is the total number of overall image parameters; weight1 and weight2 are two 

priority weights related to the level of importance of the accuracy factor and the num-

ber of selected image parameters; where in this study, the accuracy factor is more im-

portant than the number of selected image parameters;thus, the value is set at weight1 

= 0.6 and weight2 = 0.4 based on preliminary research. 

Texture analysis can be considered as one of the reliable methods for extracting digi-

tal image parameters [33-34]. The procedure for calculating the color co-occurrence 

matrix (CCM) consists of three main stages, including: (1) digital images which are 

converted from RGB colors to other color representations such as grey [35], hue-
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saturation-lightness (HSL), hue-saturation-value (HSV) [36], Lab, XYZ [37], LCH 

[38], LUV [39], CMY, and CMYK; (2) calculation of spatial gray-level dependence 

matrix (SGDM) [40], which produces one CCM for each color space, where the CCM 

value is built based on normalized color data values; and (3) calculation of ten formu-

las of Haralick TFs [27]. Ten Haralick TFs equations, is derived from a formula: 
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where P(i, j) is the element to (i, j) th of the normalized co-occurrence matrix value, 

while μ and σ are the average values and the standard deviation of the pixel element 

of the digital image is calculated by using the following equation: 
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wherein N(i,j) is the number of normalized values of pixel pairs in digital images, 

constructed of values of pixel intensity to i and pixel intensity values to j, while M is 

the total number of pixels in digital images. 

The results of preliminary studies using various combinations of variations in angle 

values (θ = 0o, θ = 45o, θ = 90o, θ = 135o) and distance values (d = 1, d = 2, d = 3) 

256             Y. Hendrawan et al.



 

indicate that angle combinations (θ = 0o) and distance (d = 1) has the best perfor-

mance compared to the combination of θ and the other d to identify the water content 

in cassava chips. Therefore, in this study, TFs were calculated by using the best val-

ues of θ and d. As a result, the total number of TFs is 260 which includes 10 TFs for 

each color space of R, G, B, grey, hue, saturation(HSL), saturation(HSV), lightness(HSL), 

value(HSV), X(XYZ), Y(XYZ), Z(XYZ), L(Lab), a(Lab), b(Lab), C(LCH), H(LCH), u(Luv), v(Luv), C(CMY), 

M(CMY), Y(CMY), C(CMYK), M(CMYK), Y(CMYK), and K(CMYK). 

The BPNN three-layer structure is applied in this study including input layer, one hid-

den layer, and output layer. The learning rate and momentum values are set with val-

ues of 0.1 and 0.9. The number of hidden nodes in the hidden layer is set to 20. The 

input in this study is the digital image parameter while the output is the cassava chips 

water content value. The performance of the training process and validation is deter-

mined by the predicted MSE value, as follows: 
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where Nn is the amount of data used, Si is the water content value of cassava chips 

predicted by using the BPNN model, and Sti is the real water content of cassava chips. 

A total of 500 data samples were randomized and divided into two parts of 400 data 

samples for training sets and 100 data samples for validation sets.  

HRIO is inspired by the optimum behavior of cockroaches. There are three basic 

cockroach behaviors that can be referred as optimization techniques, which are [41]: 

1. Find_Darkness: cockroach behavior to find the darkest shelter. The level of darkness 

in the search location can be compared as the fitness function at the optimum loca-

tion F(x). 

2. Find_Friends: cockroach behavior to socialize with nearby cockroaches with stop 

probability values (1 / τstop, N) per unit time when meeting as many as N, such as: 

0.49 / s for N = 1, 0.63 / s for N = 2, and 0.65 / s for N = 3 [42]. If individual 

cockroaches are within the radius of another cockroach area, then there is a proba-

bility of 1 / τstop, N of cockroach individuals to socialize with other cockroaches. 

This socialization process is interpreted in the form of an algorithm to share infor-

mation, where the information shared is the darkest location known by each indi-

vidual cockroach or can be referred as a personal best solution (p). When two cock-

roachs meet, it is possible they will communicate with their neighbors (N) about the 

knowledge of the darkest location they have ever encountered. Thus, the location of 

the darkest location in the cockroach group can be defined as a local best solution 

(l).  

3. Find_Food: cockroach behavior when hungry to look for food. Food locations are 

located randomly in the search area. This food-seeking behavior in optimization 

techniques aims to make the process of finding the optimum point untrapped in the 

local optima.  

The stages in the HRIO algorithm for the feature selection depicted in Figure 2 are 

as follows [28]: 

1. Initializing the HRIO parameters, the maximum iteration value is set to max = 

500, and the number of cockroach populations is set to Na = 70. Parameter neighbors 

are set as A1 = 0.49, A2 = 0.63 and A3 = 0.65. The parameter hunger is set to thunger = 
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100. The probability value for mutation is set to w = 0.5. The probability crossover 

(Co) value is set at a variable value in the sensitivity analysis process. 

2. Determining the location of the cockroach (xi) randomly with the value of 

hungeri = rand {0, thunger-1}. Each cockroach has a solution as a feature subset (xi: 

0,1,1,0,0,0,0,1,0,0,1,0, ....m), where m represents the total number of TFs (260 TFs). 

Each xi in the population represents the candidate solution to the problem of feature 

subset selection. A value of 0 indicates that the TFs are not selected, and are not 

included as BPNN input, while value of 1 means that the TFs are selected as an 

input into BPNN. 

3. Evaluating each feature-subset solution (xi) with BPNN model. 

4. Updating individual solutions F(xi). The individual solution F(xi) is calculated 

based on the performance value of predicting cassava chips water content from the 

feature-subset (xi) from the validation of MSE value. 

5. Calculating the threshold value (dg) of all neighbors in the search area by using 

the following formula of:  
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   6. Repeating steps 6.1 to 6.4 for each xi in stage 6.1. to 6.7 which are as follows: 

6.1. Repairing the personal best solution (pi) for each individual cockroach: 
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6.2. Calculating neighbors (Ni) from cockroaches i. 

For k = 1 to Na 
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6.3. Fixing darkest locations as the best solution in the group (li) based on: 

 

     



 ===

otherwisel

ArandifjikpFll
l

i

Nrkkji

i
ir 3,min]1,0[,,)(minarg

(22) 

where {i, j} are two individuals who socialize cockroaches and pk is the darkest 

location in each individual cockroach or referred to as the personal best.  

6.4. Improving cockroach location (xi): 
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The fixed xi value is influenced by three components, representing the velocity 

of the cockroach. MT represents the value of the mutation probability with var-

iable w. If rnd random number [0, 1] is smaller than w value, one mutation 

process will be carried out. The second component is a cognitive component 
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in cockroaches that represents the thinking power of each cockroach. CR rep-

resents the crossover process between ai and pi with a probability value of Co. 

Two-point crossover is selected randomly, where point1 is <point2, point1>1 

and point2<m. The third component is )l,b(CRCx iioi = , which is a so-

cial component of cockroach representing the power of collaboration in the CR 

group representing a crossover process between bi and li with a probability 

value of Co. 

      6.5. Correcting each feature-subset (xi) with BPNN model. 

6.6. Improving individual solutions F(xi) based on the value of the MSE vali-

dation with BPNN model. 

6.7. Correcting values from hungeri: 

 hungerii trandhungerhunger += ]1,0[  (24) 

6.8. Improving the best solution TIB for each iteration. 

                                                                  TIB = arg max q(F(xi)) (25) 

where the function q(.) is the value of the solution for each cockroach. 

7. Repairing the total best solution TTB using iteration-best solution best TIB with 

the formula: 
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8. Improving the best feature-subset. 

9. The iteration process will stop when the total-best solution TTB has been 

reached and the best feature-subset has reached a predetermined iteration value. 
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Fig. 2.  Hybrid HRIO and ANN to predict the water content of cassava chips. 
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3 Results and Discussion 

The principle of this research is that the external surface appearance of a food object 

caused by changes in the condition of its water content to be detected by using the 

computer vision method. This process includes water level detection in the process of 

drying cassava chips. The measurement of water content in cassava chips in this study 

utilized a wet base moisture content formula. Measuring the water content of cassava 

chips is performed at each level of dryness of the material according to three ranges of 

water content, which are: range 1 (wet) with water content of 55 - 70% wb, range 2 

(semi-dry) with water content of 20 - 40% wb, and range 3 (optimal dryness) with a 

moisture content of 0 - 10% wb. Figure 3 depicts an example of a sample of cassava 

chips in various water content conditions in this study. Visually, it is hard to distinguish 

the level of dryness from each class of cassava chips (wet, semi-dry, and optimal dry-

ness). Alternatively, a smart application with an intelligent system approach is required 

to solve this problem. 

 

   
(a) (b) (c) 

Fig. 3. The appearance of cassava chips during the drying process in various conditions of 

water content, such as: (a) wet / range 1; (b) semi-dry / range 2; (c) optimum dryness / range 

3. 

 

According to Harralick et al. [34], energy TFs are one parameter of gray level co-

occurrence matrix (GLCM) which is used to measure the intensity of pixel pairs. The 

value of energy TFs will be even greater if the pixel value in digital images is more 

homogeneous. Figure 4a illustrates the image of cassava chips having a relatively sim-

ilar energy to TFs pattern, indicating that the value of energy TFs from cassava chips 

in range 1 has the highest value with an average index value of all color spaces (0.223). 

It means that cassava chips in range 1 have high pixel of homogeneity. If the homoge-

neity of pixel pairs is higher, then the cassava chips texture in range 1 have a higher 

level of density and smoothness. Cassava chips in range 2 have low homogeneity with 

an average index value of all color spaces (0.081). This occurrence indicates that tex-

tures in range 2 began to be rougher and wrinkled because the chips had been dried for 

more than 140 minutes at 70 oC, which also occurred in cassava chips at range 3. Figure 

4b demonstrates that the entropy value of TFs in range 1 has a low value with an aver-

age index value for all color spaces (0.660). This appearance indicates that the texture 

of cassava chips at the beginning of the drying process is irregular and uneven; whereas 

in the range 2, the entropy value reaches the highest value with an average index value 

for all color spaces (0.829). Meanwhile, in range 3, the value of entropy TFs decreases 

along with the average index value for all color spaces (0.788). Based on observations 

using image analysis, it is concluded that longer dried cassava chips have a higher en-

tropy TFs value. If cassava chips are at a maximum dry point, they absorb water in 
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relatively small amounts of water vapor in the drying chamber. Contrast TFs measure 

the level of variation is performed between pixels in a digital image. Figure 4c demon-

strates that almost all contrast TFs have the same relative pattern except for u(Luv) and 

v(Luv) color spaces. This occurrence indicates that cassava chips in range 1 have contrast 

values with an average index for all color spaces (0.282), but gradually decrease to 

range 2 with an average index value for all color spaces (0.244). This result proves that 

cassava chips in range 2 have a variation of low gray degree differences. From the 

results of the image analysis, it is concluded that smaller amount of the water content 

in cassava chips produces higher contrast of TFs value. The homogeneity of TFs is 

tested to measure the level of closeness (bounding) of each element in the CCM. The 

homogeneity of TFs is expected to be higher if the gray level value for each pixel pair 

is relatively similar. Homogeneity of TFs will increase if the intensity variation in dig-

ital images decreases. Figure 4d indicates that almost all homogeneity of TFs has the 

same relative pattern except for Y(CMYK) and u(Luv). The value of cassava homogeneity 

chips in range 2 has a higher average value than in range 1. According to the average 

homogeneity of TFs, range 1 has a high value with an average index value for all color 

spaces of 0.442. This result proves that the gray degree value at each pixel is high, but 

the graph pattern slowly decreases when reaching range 2 where the average index 

value for all color spaces is 0.261. From range 2 to range 3, the chart pattern slowly 

decreases along with the average index value for all color spaces of 0.256. This result 

proves that the gray degree value continues to decrease when the drying process is 

completed, which affects the homogeneity value of TFs on cassava chips. Based on the 

results, longer drying process of cassava chips creates smaller homogeneity value of 

TFs. The inverse different moment (IDM) in TFs value indicates the smoothness of 

digital images based on the level of similarity in pixel pairs. The more homogeneous a 

digital image, IDM TFs value will be higher. IDM value is expected to be higher if the 

gray level at each pixel shows similarity. Figure 4e demonstrates that almost all IDM 

TFs have the same pattern except for C(CMYK). Cassava chips in range 1 have the lowest 

value compared to range 2 or range 3 with an average index value for all color spaces 

of 0.619. Cassava chips at range 2 water content have an average index value of 0.777 

and slowly decline to range 3 with an average index value of 0.687. The decrease in 

this value indicates that the homogeneity of the image in range 2 is high, compared to 

range 1 and range 3. Thus, it can be concluded that higher water content of cassava 

chips leads to smaller IDM TFs value. Correlation of TFs signifies a linear dependency 

measure of the gray level of an image in a CCM. The correlation of TFs is expected to 

be higher if similar grayish pixel level has a high correlation. Figure 4f indicates that 

almost all values of correlation of TFs in range 1 have a low value with an average 

index value for all color spaces of 0.405. The chart pattern depicts higher trend in range 

2 with an average index value for all color spaces of 0.510. By increasing the drying 

time, the TFs correlation also increases. In range 3, the value of the TFs correlation 

decreases along with the average index value for all color spaces of 0.476. The texture 

conditions of cassava chips that have been dried at high temperatures affect the color 

of the dried chips into dark colour due to the loss of water content. Therefore, it can be 

concluded that the lower the water content of cassava chips, the greater the value of the 

correlation of TFs. The sum mean TFs indicates the average grayish value of a digital 

image, which is expected to be higher if the mean grayish value of an image is also 

high. From the results of the sum mean of TFs, almost all TFs have different patterns 
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based on the condition of the cassava chips moisture content. Figure 4g indicates that 

the average sum mean value TFs in range 1 has a high value with an average index 

value for all color spaces of 0.438. This appearance is due to the high average value of 

grayish grades increasing in range 2 with an average index value for all color spaces of 

0.447. Changes in texture value occur because the drying process is getting longer in 

range 2. The next graphic pattern tends to fall again in range 3 with an average index 

value for all color spaces of 0.399. This indicates that the gray level value in the image 

is getting lower. From the image analysis data, it is apparent that the lower the water 

content of cassava chips, the higher the sum mean value of TFs. Variance TFs indicate 

the value of element variations in the CCM. An image with a low grayish transition 

value will also have a low variance value. The variance value of TFs is expected to be 

greater if the grayish degree is spread evenly in the image. Figure 4h presents that al-

most all TFs have the same pattern except for u(Luv). The results of image analysis pos-

tulate that the average value of variance TFs in range 1 has an average index value for 

all color spaces of 0.311. This occurrence marks that the grayish degree of the image at 

the beginning of the drying process is in a homogeneous condition. Range 2 has a lower 

value with an average index value for all color spaces of 0.181. This occurrence clarifies 

that the value of variance TFs decreases. However, the pattern of variance TFs chart 

increases as the drying process progresses. The average index value for all color spaces 

in range 3 is 0.239. Thus, it is apparent that the higher the water content of cassava 

chips, the higher the value of variance TFs. Cluster tendency TFs indicate the level of 

grouping in each pixel of similar gray image. Figure 4i indicates that almost all cluster 

tendency TFs have similar pattern except for v(Luv). It is apparent that the highest value 

is reached in range 1 with an average index value for all color spaces of 0.320, then this 

value drops in range 2 by 0.187. Furthermore, in range 3, the value of cluster tendency 

TFs rises again to 0.257, indicating that if the water content of cassava chips is low, the 

cluster tendency TFs are also lower. The maximum probability of TFs presents the 

highest number of pixel pair intensity values in the CCM. The maximum probability 

TFs also measures the regularity of pixels in a digital image. It is concluded that the 

higher the maximum probability TFs, the higher the order level. Figure 4j indicates that 

almost all maximum probability TFs have similar patter except for C(CMYK). This can 

be explained that the maximum probability TFs in range 1 has a high value with an 

average index value for all color spaces of 0.302. This appearance indicates that in 

range 1, the texture of cassava chips has a high level of regularity. However, in the 

range 2 the maximum probability TFs value decreases along with the average index 

value for all color spaces by 0.147 and rises again in range 3 with an average index 

value for all color spaces of 0.193. Therefore, it is obvious that the lower the water 

content of cassava chips, the maximum probability TFs value will be lower. 
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Fig. 4.  Distribution graphs normalized TFs from cassava chips at various levels of drying. 

 

Figures 5 present a sensitivity analysis based on the MSE value of validation data 

to predict the water content of cassava chips during drying with several learning rates, 

such as: 0.1, 0.5, and 0.9, and momentum values of 0.1, 0.5, and 0.9. Figure 5a presents 

the lowest MSE validation value achieved by feature-subset Z(XYZ) TFs with MSE value 

of 0.000129 by using learning rate of 0.5 and momentum of 0.5. Figure 5b depicts the 

lowest MSE value achieved by the energy TFs feature subset utilizing all color spaces 

with an MSE value of 0.000104 by using a learning rate of 0.1 and momentum of 0.9. 

Therefore, the feature subset of the energy in TFs using all color spaces has the best 

performance as an ANN input to predict output, including the water content of cassava 

chips during the drying process. Figure 6a presents the results of the plot of optimiza-

tion of normalized MOO fitness values by using the HRIO method, indicating effective 

performance as long as the objective function value decreases until it converges during 

the iteration process. Figure 6b depicts the performance of the training process by using 

BPNN with the feature subset obtained from the HRIO method. BPNN training results 

have effective performance as long as the value of MSE training continues to decline 

and converge as the number of iterations increases. The prediction model built with 

ANN by using a selection feature with the HRIO optimization method produces a lower 

MSE value compared to the ANN prediction model without using feature selection. 
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ANN modeling results using HRIO optimization indicate the lowest MSE value in 

training data with a value of 0.000056 and the lowest MSE value in the data validation 

is 0.000098. Figure 7 indicates the relationship between real data and predicted data. 

The value of R2 (0.98) indicates significant results by using a combination of ANN 

modeling and HRIO optimization models to predict the water content of cassava chips 

during the drying process. Table 1 depicts the optimum weights results from the input 

layer to the hidden layer obtained from BPNN model. Table 2 presents the optimum 

weights results from the hidden layer to the output layer from BPNN model. The struc-

ture of the ANN model is depicted in Figure 8. 

 

  
(a) (b) 

Fig. 5.  Sensitivity analysis feature-subset TFs on various color spaces and TFs based on the 

validation MSE value using various combinations of learning rate (LR) and momentum 
(mom). 

 

 

 

  
(a) (b) 

Fig. 6.  Plot of the best MOO fitness value and Performance of BPNN training process. 
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Fig. 7.  Relations between real-predicted data. 

Table 1. The weights from the input layer to the hidden layer. 

V(x,y) 
x 

1 2 3 4 5 6 

y 

1 -0.855 0.269 -0.426 -1.112 -0.819 -3.283 

2 -2.118 1.007 3.164 1.60E+00 1.189 -11.458 

3 -12.036 -4.580 1.704 3.288 -3.082 -5.305 

4 -2.763 2.210 -1.795 -2.083 8.80E+00 1.519 

5 3.472 -7.73E-01 -0.166 -0.361 -1.071 1.667 

6 -8.826 3.63E+00 -1.973 -0.865 -1.926 5.803 

7 2.144 0.935 -8.54E-01 1.204 -3.088 -1.162 

8 -7.01E+00 -3.952 5.684 -1.738 -4.999 -4.866 

9 11.615 6.148 -5.402 -3.179 2.812 10.796 

10 1.016 -0.365 -0.644 -2.279 -0.863 -4.768 

Table 2. The weights from the hidden layer to the output layer. 

Weights 

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 

-

3.696 

-

6.344 

-

9.967 

-

6.247 

2.8

11 

-

6.895 

2.3

30 

-

6.029 

11.3

43 

-

4.345 
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Fig. 8.  ANN model for monitoring the water content of cassava chips during drying pro-

cess. 

4 Conclusion 

In this study, textural features (TFs) were extracted from various color spaces such as 

grey, RGB, HSV, HSL, Lab, XYZ, LCH, Luv, CMY, and CMYK to model the water 

content of cassava chips during the drying process. Back-propagation neural network 

(BPNN) has been successfully tested to model the relationship between TFs and cas-

sava chip water content. Based on the results of the test, the feature subset of the energy 

TFs using various color spaces indicates the best performance compared to other vari-

ous features subset without using the feature selection method. The feature selection 

method has been proven to be successful in improving the predictive performance of 

artificial neural network (ANN). In overall, there is a significant difference between the 

ANN model using the feature selection and the ANN model that was built without fea-

ture selection. Based on the results of the optimization, the hungry roach infestation 

optimization (HRIO) method achieves the best performance to optimize fitness values 

by using multi-objective optimization (MOO) to minimize prediction errors and num-

ber of feature subset. From the ANN modeling results with HRIO optimization, mean 

square error (MSE) value in the training data is 0.000056 and the MSE value in the data 

validation is 0.000098 with R2 values between the real-predicted data of 0.98. ANN 
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model obtained in this study is applicable to monitor the drying process of cassava chips 

in real-time during the drying process to get the best moisture content.  
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