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Abstract. Remembering when COVID-19 had such a huge impact in Indonesia. For 

pandemic prevention and control, it is important to use all available technologies for 

mitigation. There are reports of attempts to use drone technology in various settings. 

Drones can help control pandemics in a variety of ways. Recent research has revealed the 

benefits of drones, especially the type of quadrotor. The development of the quadrotor 

drone system as a flying platform for air surveillance has received a lot of attention. 

Drone-based surveillance uses cameras to capture images and videos to obtain 

information about a particular geographical area or topography. The reason for the analysis 

of air images is the need to predict changes in the areas of interest, such as to count the 

crowd, remembering from the lessons we can learn in the efforts to prevent the COVID-

19 pandemic of that time. The main challenge is to figure out how to create a system that 

can provide accurate counting of the crowds of the air, which is important for fighting 

pandemics. The aim of this paper is to show the application of drones from the air object 

tracking system for crowd detection in a small-scale area. The report also proposes 

alternative solutions based on the use of microquadrotor drones equipped with cameras 

on board. In addition, images are transmitted and processed in mobile applications to 

provide more information about the object. Several experiments show that the system 

has been effectively installed and provides data collection for further research. The results 

showed that the system could be used for small-scale air monitoring. 

 

Keywords: COVID-19, pandemic, drone, aerial, quadrotor, object tracking, surveillance, 

monitoring, crowd counting, small-scale. 

 

1 Introduction 
 
The In recent years, there has been a growing interest in the development of efficient and 

reliable surveillance systems capable of monitoring crowded areas, particularly in the 

context of public health crises such as the COVID- 19 pandemic (Fadzil et al., 2021). The 

COVID-19 pandemic has underscored the need for innovative approaches to crowd 

management and monitoring. Traditional methods of crowd control, such as physical 

barriers and manual surveillance, often prove insufficient in densely populated areas, 

making it challenging to implement and enforce social distancing protocols effectively (Al- 
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Sa’d et al., 2022). Furthermore, the contagious nature of the virus necessitates prompt 

identification and response to potential outbreaks, requiring systems capable of detecting 

and tracking individuals in real-time (Yadav et al., 2022). 

 

The proposed Aerial Object Tracking System leverages the advantages of micro quadrotor 

drones, which are small, lightweight, and agile aerial platforms equipped with high-

resolution cameras and sensors. These drones can be deployed in small-scale areas, such as 

parks, markets, or public transportation hubs, to capture comprehensive visual data from an 

elevated perspective (Wu et al., 2017; C. Zhang et al., 2022). By employing advanced 

computer vision algorithms and machine learning techniques, the system can identify and 

track individuals, detecting instances of overcrowding or violations of social distancing 

guidelines (Wang et al., 2022). One key advantage of using micro quadrotor drones for 

crowd detection is their ability to navigate complex environments and rapidly respond to 

changing situations (Castellano et al., 2023). These drones can autonomously adapt their 

flight paths, providing dynamic coverage of different areas of interest. Moreover, the 

integration of real-time video streaming and analysis allows for immediate decision-making 

and response by authorities responsible for crowd control, enabling timely interventions 

and ensuring the safety and well-being of the public (Alzahrani et al., 2022). 

 

By focusing on small-scale areas, the Aerial Object Tracking System offers a localized 

approach to crowd detection, enabling targeted interventions to mitigate the spread of 

COVID-19 (C. Zhang et al., 2022). It provides valuable data for authorities to identify 

hotspots, monitor compliance with health guidelines, and optimize resource allocation. 

Additionally, the system can support contact tracing efforts by providing visual records of 

individual movement patterns, aiding in identifying potential transmission chains and 

reducing the risk of outbreaks. 

 

2 Literature review 
 
Extensive research has been conducted in the field of computer vision pertaining to crowd 

counting and crowd density estimation. However, the current emphasis lies in the domain 

of density estimation. In early studies, person or head detectors were commonly employed 

using a sliding window approach to the image. Nevertheless, despite the adoption of 

cutting-edge object detectors like YOLO (Lan et al., 2018; Molchanov et al., 2017), these 

methods still yield suboptimal outcomes when confronted with the detection of small 

objects within highly congested crowds. To address this challenge, regression-based 

techniques have been introduced, enabling direct learning of the mapping from an image to 

the overall count of people (Fadzil et al., 2021). Although these methods alleviate the 

reliance on precise individual positioning within the crowd, a task that is inherently 

complex, they fail to leverage spatial information, which holds significant predictive value. 

To circumvent the difficulty of accurately detecting and localizing individuals in the scene 

while leveraging spatial information, the recent trend involves the acquisition of density 
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maps, thereby directly integrating spatial information into the learning process (Fan et al., 

2022). Promising solutions have emerged in this regard. Some methodologies first operate 

at the patch level and subsequently fuse local features (Zhu et al., 2020). Others incorporate 

attention mechanisms (G. Zhang et al., 2020), adopt cascade approaches to simultaneously 

learn people counting and density maps (Sindagi & Patel, 2017). enhance performance 

through knowledge distillation (Jiang, Lin, & Jane Wang, 2021), or develop frameworks that 

enable concurrent crowd counting and localization (Jiang, Lin, & Wang, 2021). These 

successful approaches demonstrate the potential of incorporating spatial information and 

employing diverse techniques to advance crowd counting and density estimation tasks 

(Fadzil et al., 2021). 

 

Despite their effectiveness, the computational demands and stringent requirements imposed 

by Unmanned Aerial Vehicles (UAVs), such as limited battery capacity and real-time 

response constraints, pose challenges for the adoption of existing approaches. The fine-

tuning of deep neural architectures to achieve an optimal balance between precision and 

performance is an active area of research. To stimulate progress in this domain, the 

VisDrone Crowd Counting challenge was introduced (Chen et al., 2021). However, the 

solutions presented by participants in the challenge often prioritize effectiveness over 

efficiency, aiming primarily to minimize counting errors rather than addressing 

computational constraints. The solution that achieved the lowest counting error in the 

challenge was TransCrowd (Liang et al., 2022), which builds upon the increasingly popular 

Vision Transformer (Vaswani et al., 2017). Notably, the proposed method focuses solely on 

regressing the count of individuals, without providing density maps that could facilitate 

crowd flow detection. Moreover, it is acknowledged that transformer-based solutions are 

associated with computationally expensive operations, further complicating their practical 

implementation. 

 

An effective strategy for mitigating these challenges involves the utilization of OpenCV 

models. An extensive study was conducted on the OpenCV platform and its integrated 

libraries in order to generate a code that correctly and reliably recognizes the crowd by using 

modern and powerful hardware. Consequently, OpenCV models offer a potential solution 

to achieving accurate models while maintaining efficient inference times. In the context of 

aerial drone imaging, an OpenCV model specifically designed for this purpose was 

introduced in(Shadakshri et al., 2022). Additionally, a similar approach was proposed in 

our prior research (Castellano et al., 2020). However, it is crucial to note that both of these 

methods primarily focused on crowd detection tasks, specifically discriminating between 

crowded and uncrowded scenes. Furthermore, the density maps generated by these models 

were coarse in nature, as they were not trained on individual people labels. 

 

Prior research has explored human tracking methods utilizing RGB cameras or other sensors, 

employing clustering or classification models for motion tracking (Gajjar et al., 2017; Xiao 

et al., 2019; Yan et al., 2020). However, these approaches are typically designed for indoor 

environments or scenarios involving a limited number of individuals observed from frontal 
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perspectives. In a related work, the authors of (Wen et al., 2021), who also introduced the 

VisDrone Crowd Counting datasets, proposed a model catering to drone-captured images, 

addressing density map estimation, localization, and tracking simultaneously. Notably, their 

model differs from ours, as it involves a complex and costly pipeline specifically designed 

for tracking individual trajectories. Another recent contribution from different authors 

involves a periodic crowd tracking method from UAVs, based on a binary linear 

programming model (Chebil et al., 2022). Nevertheless, this work was conducted using 

simulated scenarios and did not explicitly tackle the crowd detection challenge from a 

computer vision perspective. As far as our knowledge extends, there is a lack of literature on 

crowd flow detection in drone videos, a context presenting markedly distinct challenges 

compared to conventional settings. This paper endeavors to bridge this gap by focusing on 

tracing centroids that identify groups of people, capitalizing on the spatial information 

learned and expressed through density maps. 

 

3 Materials and Methods 
 
3.1 Dataset processing 

 

The dataset collection phase of this research involved the utilization of the Haar cascade 

method for face detection. The Haar cascade classifier, implemented in the OpenCV library, 

was employed to automatically detect and localize faces within the collected images. The 

Haar cascade classifier is a machine learning-based object detection technique that utilizes 

a set of trained features to identify specific patterns, such as facial features, in an image 

(Syed Ameer Abbas et al., 2018). Each detected face was considered as an individual 

instance and counted as one person within the dataset. 

 

During the dataset collection process, emphasis was placed on accurately determining the 

number of individuals present in the crowd scenes. To achieve this, every face detected by 

the Haar cascade classifier was counted as one person. This approach ensured that each 

detected face was treated as an individual entity within the dataset. Additionally, in cases 

where multiple faces intersected with each other, they were considered as a single group. 

By grouping intersecting faces together, the dataset captured the collective presence of 

individuals in close proximity, providing valuable insights into crowd dynamics and 

density. 

 

The Haar cascade-based dataset collection approach yielded a comprehensive collection of 

annotated images, where each image contained one or more instances of detected faces 

(Nadeem et al., 2022). Through this method, the dataset accurately represented the diversity 

and complexity of crowd scenarios in small-scale areas. The dataset served as a crucial 

resource for training and evaluating the Aerial Object Tracking System for Crowd 

Detection, enabling the development and validation of robust algorithms for crowd analysis 

and tracking tasks. 
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3.2 Drone control and integration 

 

The drone control and integration method employed in this research involved a systematic 

approach to ensure smooth and accurate operation of the drone platform. The DJI Ryze 

Tello drone was utilized as the aerial platform due to its compact size, maneuverability, and 

integrated features. The control and integration process encompassed flight control 

software, sensor integration, and communication interfaces. To enable precise control over 

the drone's flight parameters, customized flight control software was developed. This 

software facilitated autonomous flight operations by implementing algorithms for altitude 

control, position estimation, and trajectory planning (Cocca et al., 2022). Through the flight 

control software, commands were sent to the drone to adjust its altitude, navigate within the 

target area, and maintain stable flight. The integration of the flight control software enabled 

the drone to perform predefined flight patterns and execute maneuvers required for crowd 

detection and tracking. 

 

In this research, we integrated the DJI Tello drone using the DJITelloPy and Pygame 

frameworks. At the drone control stage, we connected a laptop to a drone using dji tello 

drone Wi-Fi. We can transmit control commands like takeoff, landing, and control drone 

movements like flying forward, flying backward, fly left, and fly right using the DJITelloPy 

functions. Then, we created an interactive user agent for laptops using Pygame. To make it 

possible for users to control drones in an intuitive manner, we created a keyboard controller. 

Keyboard controller in this case refers to the buttons for takeoff, landing, and for directing a 

drone to various directions. By integrating DJITelloPy and Pygame, we can easily and 

effectively control the DJI Tello drone. The user can control the drone using the 

DJITelloPy-supplied controls as well as an application that was created using Pygame. 

 

Furthermore, seamless communication between the drone and the research system was 

achieved through wireless communication interfaces. The drone's Wi-Fi capabilities 

enabled the transmission of captured imagery and sensor data in real-time to the research 

system. This facilitated continuous monitoring and analysis of the crowd scenes from the 

aerial perspective. The integration of wireless communication interfaces ensured a reliable 

and efficient exchange of data between the drone platform and the research system, enabling 

prompt decision-making and adjustments in tracking algorithms. 

 

3.3 Experimental setup 

 

The experimental setup focused on conducting crowd detection experiments within an 

indoor room. The indoor environment was carefully conditioned to provide a controlled 

setting for evaluating the performance of the aerial object tracking system. The room 

dimensions were 29.16 m2 to accommodate the flight path of the drone and allow for 

realistic crowd movement simulations. To ensure consistent and reliable results, appropriate 
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measures were taken to control the environmental factors. The room was maintained at a 

constant temperature of 24 °C minimize any potential thermal variations that could affect 

the drone's flight stability and the accuracy of crowd detection. The room was also shielded 

from external light sources to maintain consistent lighting conditions throughout the 

experiments. 

 

To mimic real-world indoor scenarios, the room was furnished with objects and structures 

commonly found in indoor environments. These objects were strategically placed to 

simulate crowd formations, movement patterns, and potential occlusions. By incorporating 

these elements, the experimental environment aimed to provide a realistic representation of 

crowd dynamics in confined spaces. To ensure accurate evaluation of the aerial object 

tracking system's performance, the room was kept free from any external disturbances that 

could influence the flight behavior of the drone or introduce noise in the captured images. 

Strict control over external factors, such as air drafts and ambient noise, was maintained to 

minimize their impact on the experimental outcomes. By carefully conditioning the 

environment, the research aimed to provide a reliable and representative setting to evaluate 

the performance of the aerial object tracking system in crowd detection within an indoor 

room. 

 

4 Results and Discussion 
 
The conducted experiments revealed several important findings regarding the performance 

and limitations of the aerial object tracking system and the controller system. These findings 

contribute to a better understanding of the system's capabilities and provide insights for 

potential improvements in future implementations. The low resolution of the drone camera 

emerged as a significant challenge during the experiments. It was observed that the drone's 

limited resolution adversely affected the quality of the captured images, thereby impacting 

the subsequent image processing and analysis. Higher-resolution cameras may be required 

to capture more detailed and informative images for accurate crowd detection and tracking. 

In the other hand, the usage time of the drone was found to influence the overheating of the 

drone's engine. As the drone operated for prolonged periods, the temperature of the engine 

increased, leading to performance issues. This overheating phenomenon caused the 

captured images to exhibit blinking and graphical distortions, compromising the accuracy 

and reliability of the image processing algorithms. Implementing efficient cooling 

mechanisms or utilizing drones with better heat dissipation capabilities could address this 

issue. 
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Figure 1. The drone controlled by built-in control system. 

Figure 1 demonstrates how the djitellopy and pygame control systems can be used by 

users to control the DJI Tello drone's movement from a computer using the keyboard as an 

interface. Djitellopy, which enables keyboard input processing in PyGame, makes it simple 

for users to connect to and fly Tello drones. With this configuration, users are able to 

quickly control Tello drone operations like takeoff, landing, climbing, descending, 

twisting, and bending through the keyboard's buttons. The control system offers a 

straightforward but efficient control experience when moving the DJI Tello drone using a 

computer and a keyboard. 

 

 

Figure 2. The system display that has installed PysimpleGUI as its GUI. 

 

Figure 2 shows the display image processing system using OpenCV has been installed in 

PySimpleGUI and has been equipped with the "Save" button feature to save images. 

Whenever the button is pressed, the displayed image will be saved with an incremented 

name, allowing the user to easily track and manage the image result of processing. 
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Figure 3. The flashing display and graphic distortion due to drone overheat. 

Figure 3 displays the output from the drone's image processing overheating camera. 

This happens as a result of using a drone for more than 7 minutes. The camera drone output 

would reportedly exhibit flashing displays and graphic distortion as a result of overheating. 

 

 

Figures 4. The image stored using the features on the GUI. 

 

Figure 4 displays the image processing outcomes that were stored using the user interface's 

"Save" button. (GUI). Users can save the outcomes for later use after processing photos 

using various approaches including filtration, segmentation, or other processing. The 

processed image will be saved in the appropriate format, such as JPEG, PNG, or TIFF, by 

pressing the "Save" button. With the aid of this procedure, the user is able to record the 

quality and detail that have been attained through earlier stages of image processing. 

 

The experiments indicated that the accurate detection range of the system was limited to 

approximately 1.2 to 5.4 meters. Beyond this range, the system's ability to detect and track 

objects declined, resulting in decreased accuracy. Extending the detection range could be 
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achieved through advancements in camera technology, such as higher zoom capabilities or 

the integration of additional sensors to enhance the system's perception capabilities. 

Furthermore, the experiments revealed that the connection range between the drone and the 

laptop was limited to approximately 10 meters. This restricted range could potentially 

hinder the system's mobility and operational flexibility, especially in scenarios requiring 

larger coverage areas. Exploring communication protocols with longer ranges or 

implementing signal amplification techniques could extend the operational range between 

the drone and the laptop. 

 

Table 1: Distance test results. 

 

No Distance 

(m) 

Number 

of People 

Accuracy Maximum 

Speed 

(km/hour) 

Time of 

Kontrol 

Response 

(Second) 

Detection 

response time 

from 

beginning 

(Second) 

1 1.2 3 100% 22.14 0.83 1.54 

2 2.4 3 100% 21.48 0.94 1.47 

3 3.6 3 56% 22.64 0.91 3.89 

4 4.8 3 32% 20.21 1.14 4.13 

5 5.4 3 0% 21.6 0.98 0 

 

 

 
Figure 5. Diagram of accuracy. 

 

Based on table 1 and figure 5, it can be concluded that in image processing, as the distance 

of object detection increases, the accuracy of detection tends to decrease. This is due to 

several factors. First, the farther the detection distance, the smaller the size of the object in 
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the image. This leads to the loss of important details and information about the object. 

Furthermore, the further the detection distance, the more noise or interference that can 

affect image quality. Disturbances such as distortion, signaling, or loss of detail in an image 

can reduce the accuracy of object detection. Furthermore, the farther the detection distance, 

the smaller the contrast between the object and the background, so the object detection 

algorithm may have difficulty distinguishing the object from its background. Therefore, it 

is important to consider the optimal detection distance in image processing to ensure 

maximum object detection accuracy. 

 

In the context of drone and laptop-based object detection, it's important to understand that 

the maximum drone control distance and the maximum object detection distance are two 

different parameters. Maximum drone control of a laptop typically involves the presence of 

a wireless communication channel between the drone and the pendali, such as Wi-Fi or a 

radio link. As a result of this, there is a greater chance that there will be a failure in 

communication or a sinister force that can interfere with drone control as the control 

distance increases. On the other hand, the maximum object detection distance from the 

laptop depends on how far the object-detection algorithm and image processing system can 

detect objects. However, because to the loss of detail, increased noise, and decreased 

contrast, the detection accuracy decreases as the object detection distance increases. 

 

Thus, it is important to consider realistic maximum distance limits and allow both in drone 

control and object detection. Factors such as the environment, communication signals, 

image quality, and the need for object detection should be considered to a balance between 

reliable drone control distance and adequate objects detection accuracy. 

The result also shows that the experiments also emphasized the significant impact of 

lighting conditions on the drone camera's performance. The low resolution of the camera 

combined with suboptimal lighting conditions resulted in reduced image quality and 

decreased the system's detection capabilities. Enhancing the camera's sensitivity to light or 

integrating advanced image processing algorithms that compensate for challenging lighting 

conditions could improve the system's performance in various lighting environments. 

Moreover, the experiments highlighted the vulnerability of the graphical output transmitted 

from the drone to potential disruptions caused by overheating or poor network connectivity. 

These disruptions could lead to the deterioration of the graphical quality, rendering the 

output unreliable and potentially hindering effective monitoring and analysis. Ensuring 

proper heat dissipation mechanisms and improving network stability is crucial for 

maintaining the integrity of the graphical output. 

 

Table 2: Lighting test results. 

 

No Light Distance 

(m) 

Number 

of People 

Accuracy 

1 Ambient light 1.2 3 100% 
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2 Ambient light 2.4 3 100% 

3 Ambient light 3.6 3 64% 

4 Ambient light 4.8 3 36% 

5 Ambient light 5.4 3 0% 

6 Low light 1.2 3 56% 

7 Low light 2.4 3 28% 

8 Low light 3.6 3 0% 

9 Low light 4.8 3 0% 

10 Low light 5.4 3 0% 
 

Figure 6. Accuracy diagram based on lighting condition. 

Based on table 2 and figure 6, The contrast between ambient light and low light plays a 

crucial role in object detection in image processing. When the ambient light is sufficiently 

bright, the resulting image has high contrast, sharp details, and more discernible objects. 

This enables the object detection system to perform more accurately and produce better 

results. However, difficulties arise when working in low light circumstances. The resulting 

photos are dark and often have a high level of noise. This can result in object detail loss, 

low contrast, and fuzzy images. As a result, object detection algorithms may struggle to 

differentiate objects from backgrounds with small brightness changes. 

 

At the same time, the experiments demonstrated the impact of adjusting the 

"detectMultiscale" function's parameters in OpenCV on the accuracy of image processing. 
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120% 
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40% 
 

20% 
 

0% 

1002             M. D. B. Pranoto et al.



 
Specifically, reducing the scaleFactor parameter resulted in lower accuracy in detecting 

relevant objects while also increasing the chances of false detections. Fine-tuning these 

parameters is crucial to strike a balance between detection accuracy and false positive rates, 

ensuring the system's optimal performance. 

 
Table 3: scaleFactor Accuracy test results. 

 

No scaleFactor Distance 

(m) 

Number 

of People 

Accuracy 

1 1.1 2.4 3 100% 

2 1.2 2.4 3 100% 

3 1.3 2.4 3 56% 

4 1.4 2.4 3 32% 

5 1.5 2.4 3 0% 

6 1.1 3.6 3 84% 

7 1.2 3.6 3 64% 

8 1.3 3.6 3 56% 

9 1.4 3.6 3 0% 

10 1.5 3.6 3 0% 

11 1.1 4.8 3 24% 

12 1.2 4.8 3 0% 

13 1.3 4.8 3 0% 

14 1.4 4.8 3 0% 

15 1.5 4.8 3 0% 

 
 

Based on table 3, scaleFactor parameters in object detection using play an important role in 

controlling image scale size for the detection process. However, it should be remembered 

that the larger the scaleFactor value, the more inaccurate the detection of the object. If the 

scaleFactor value is too small, near-distance objects may be difficult to detect due to the 

relatively small size of the object on an image that is not scaled. On the other hand, if the 

scaleFactor value is too large, the object at a distance can become too small and lose detail 

in the image that is scaled massively. Therefore, it is important to choose the right 

scaleFactor to optimal object detection at various distances. 

 

5 Conclusion 
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In conclusion, the conducted experiments provided valuable insights into the performance 

and limitations of the aerial object tracking system. The low resolution of the drone camera 

was identified as a challenge, impacting image quality and subsequent image processing. 

Higher-resolution cameras are recommended to improve the system's ability to capture 

detailed images for accurate crowd detection. Overheating was observed as the drone 

operated for longer durations, leading to image distortions. Implementing effective cooling 

mechanisms or using drones with better heat dissipation capabilities can mitigate this issue. 

The experiments also highlighted the limited detection and communication ranges of the 

system, emphasizing the need for advancements in camera technology and communication 

protocols to extend these ranges. Lighting conditions were found to significantly affect 

image quality and detection capabilities, suggesting the importance of enhancing camera 

sensitivity and employing advanced image processing algorithms. Furthermore, adjusting the 

parameters of the image processing function in OpenCV was crucial to optimize detection 

accuracy and minimize false positive rates. 
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