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Abstract. Failure of a material is always accompanied by plastic deformation
and fracturing processes. Continuum plastic mechanics can handle plastic defor-
mation effectively when it employs a yield function and the flow rule. As a result
of its inability to account for the microstructure of the material, the continuum
mechanics method has some drawbacks when addressing the fracture problem.
The lattice model can simulate the fracture problem quite well, but it is insuf-
ficient for plastic deformation. The aim of this paper is to embed the modified
Stillinger-Weber potential in the discretized virtual internal bond (SW-DVIB) in
order to simulate the plastic deformation and fracture at the bond level. In the
original DVIB, the interaction between particles in a cell is characterized by an
interatomic bond potential, which intrinsically contains the microfracture mecha-
nism. Nevertheless, because the interatomic potential only accounts for the effect
of the bond stretch, the Poisson ratio it represents is fixed. To remedy this draw-
back, the plasticity is embedded into the modified Stillinger-Weber potential, and
the elastoplastic SW-DVIB is developed so that it can simulate the elastoplastic
fracture and deformation in the solid with different Poisson ratios. The simulation
results show that the method can simulate the fracture behaviors and the plastic
deformation with accuracy because it is based on the discrete lattice structure
of the elastoplastic SW-DVIB and is efficient in dealing with the model-induced
fracture propagation problem.

Keywords: Plastic deformation · lattice model · plastic fracture · modified
Stillinger-Weber potential · discretized virtual internal bond

1 Introduction

The continuum mechanics method can be used to simulate elastoplastic fracture, but its
limitation lies in the lack of considering mesostructural characteristics of the material
in the constitutive relationship; meanwhile, micro- and meso-models established at the
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atomic and molecular levels are limited by computational limitations to small-scale
simulations. To overcome such limitations, some scholars proposed a quasi-continuous
medium method, which can be traced back to the quasi-continuous model proposed by
Tadmor et al. [1, 2]. The quasi-continuous (QC) method is an approach used to construct
macroscopic constitutive equations of a material using the interaction potential between
atoms. The finite element method is employed to reduce the degrees of freedom, while
judgment criteria are used to determine local and non-local atom energies. Shilkrot et al.
[3, 4] have developed a plastic multi-scale model and an atomic-continuum coupled
approach to simulate dislocations and two-scale interfaces respectively. The QC model
is an effective way of reflecting the micro-mechanical structure of materials, but has
the limitation of unbalanced “Ghost Force”. Other methods, such as Coarse-Grained
Molecular Dynamics (CGMD) [5] and Bridge Domain Scale (BS) [6, 7] have been
proposed to deal with this issue. TheVirtual Internal Bond (VIB) [8] model has also been
used to simulate elastoplastic fracture, decomposing the strain into elastic and plastic
parts, and using the two-body potential to characterize interactions between particles.
To solve the problem of the Poisson ratio, the effect of bond rotation and bond angle was
considered in the VIB model by Zhang and Ge [9]. The Finite Element Method (FEM)
and Extended Finite Element Method (XFEM) [10] are powerful numerical analysis
methods used to simulate material damage without needing to re-mesh in the process
[11].However, the linear elastic fracturemechanics used in thesemethods are not suitable
for heterogeneous brittle materials like rock or concrete due to the presence of many
micro-cracks [12]. This has led to the development of theMeshlessMethod andStatistical
Strength Theory [13, 14], which approaches the problem of fracture propagation by
analyzing the accumulation ofmicro-cracks. The discretemodel is a widely usedmethod
for simulating the fracturing process of materials, where the material is represented by a
discrete structure composed of spring, bar, or beam elements. Different discrete models
have been developed, such as the lattice model [15, 16], spring model [17], a discrete
Unit method [18], particle flow method [19], and discontinuous deformation analysis
[20]. The lattice model is the most common of these and is traced back to Hrenníkoff
[21]. It is used to solve classical elastic mechanics problems and simulates the initiation
and evolution of micro-damage in the material by the successive failure of individual
bar or spring units. However, it still has problems with parameter calibration and the
force criterion used to damage the rod can’t account for hyperelastic behavior. Recent
developments in hybrid lattice methods have improved the lattice model and allowed it
to be used to study granular materials, fiber materials, and composite materials [22–25].
The parameter calibration of lattice models is complicated for 3D cases, as the macro
Poisson’s ratio is fixed [26]. To solve this, a beam element can be used to allow for shear
effects, and an angular spring to limit the change of the angle [27–29]. Recently, Zhang
developed the DVIB model which is composed of virtual unit bond cells and can take
any geometry [30]. This provides an alternative to using beams and angular springs.
The Discrete Viscous Bond (DVIB) model is a lattice model which can simulate large
deformation dynamic fracture problemswithout external fracture criterion. Xu et al. [31]
have combined the continuum plastic theory with the latticemodel to consider the plastic
deformation directly on the micro bond level. Zapperi et al. [32], Seppala et al. [33], and
Picallo et al. [34], have considered plasticity in the arbitrary fuse grid which is analogous
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to the lattice structure. Ding et al. [35] have also accounted for plastic deformation
in DVIB, while Zhang and Chen [36] have used the modified Stillinger–Weber (SW)
potential to describe the total energy of a bond cell and overcome the limitation of the
fixed Poisson ratio. So far the DVIB can account for plastic deformation but the Poisson
ratio is fixed while the SW-DVIB can represent the various Poisson ratio but it cannot
account for the plastic deformation. To further improve the DVIB model and make it
capable of accounting for both the plastic deformation and the various Poisson ratio,
the SW-DVIB is extended to the plastic case in this paper. The plastic deformation will
be considered in the two-body interaction of the modified SW potential and keep the
three-body interaction elastic. By this means, the SW-DVIB can account for the plastic
deformation on one hand. On the other hand, it can represent the various Poisson ratio.
Thus, such plastic SW-DVIB can be used to simulate the elastoplastic fracture problem
and plastic deformation.

2 Background of SW-DVIB

The Stillinger-Weber (SW) potential proposed in [37] is a combination of two and three-
body interactions, with bond energy dependent on the bond length and bond angle.
Originally, it was employed to model the silicon material, with the ideal tetrahedral
angle acting as the reference bond angle. Zhang et al. [36], modified the SW potential
in 2014 by using the bond angle from the reference configuration as its reference angle,
making it more applicable to othermaterials than silicon as it is shown below (see Fig. 1).
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For a bond cell shown in Fig. 1, the total energy is shown in Eq. (1). The constitutive
relation of a bond cell is derived as the following. The node force and stiffness matrix
are shown in Eqs. (2) and (3) respectively. The two-body and three-body interaction in
the linear elastoplastic SW-bond potential can be written as:
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Fig. 1. A bond cell described by the modified SW potential

3 Consideration of Plasticity in SW-DVIB

The SW-potential includes two parts, namely the two-body and the three-body potential.
To build up the elastoplastic SW-DVIB, the plasticity is considered in the two-body
potential while the three-body potential is kept elastoplastic. So, the general constitutive
relation of the SW-DVIB takes the form as shown in Eqs. (1). Ding et al. have considered
the plasticity in the two-body potential of Eq. (2) [35]. In this new method, we consider
the constitutive model of the elastoplastic SW-DVIB shown in [38]. In [39], the linear
elastic-brittle three-body potential was developed. In the present elastoplastic SW-DVIB,
this three-body potential is adopted:

�3 =
{

1
2λ(θIJ − θIJ0)

2 if max
(

lI
lI0

, lJ
lJ0

)
≤ 1 + εr and |θIJ − θIJ0| ≤ εθ θIJ0

constant else
(5)

where εr is the critical bond length strain over which bond breaks; εθ is the critical
bond angle strain over which bond angle loses its mechanical resistance. Ding et al.
presented a diagram of the two-body potential, whichwas derived from the interpretation
of the physical parameters [35]. To facilitate the parameter analysis, the dimensionless
parameters defined in [35]are still used. The elastoplastic SW-DVIB parameters were
calibrated using the methodology proposed by Zhang [39].
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where V is the volume of a unit cell, and the failure bond strain is calibrated as:

ε̃f =
{

(1 − α)
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(1 − α)
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(7)

where the ratio γ /N is related to the specific topology of a unit cell. According to Zhang
et al. [39], γ /N ≈ 0.33 for the 2D irregular triangular and γ /N ≈ 0.15 for the 3D
irregular tetrahedral cells. As for the other derivatives, e.g. ∂l/∂ui, ∂θIJ /∂ui, refers to
Zhang and Chen [36].
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Fig. 2. Parameter sensitivity analysis, (a) simulation specimen; (b) influence of ε̃y, ε̃b = ε̃y +2×
10−3, α = 0.2; (c) influence of ε̃b,ε̃y = 1×10−3, α = 0.2; (d) influence ofαε̃y = 1×10−3, ε̃b =
3 × 10−3

3.1 Numerical Implementation

When the numerical simulation is performed by using the SW-DVIB method, the first
step is to mesh the object. Usually, the triangular cell (2D problem) or the tetrahedral
cell (3D problem) is used. The cell nodal force and cell stiffness matrix can be obtained
using a method specified in [27]. The matrices are then combined to form the total nodal
force matrix and the total stiffness matrix. The final equilibrium equation can be written
into the following matrix form.

MRu+CPu+F(u,t) =R(t) (8)

where M is the lumped mass matrix; C is the damping matrix; F(u, t) is the restoring
force vector; u is the vector of nodal displacement; R(t) is the external force vector.

3.2 Sensitivity Analysis of the SW-DVIB Method

In order to investigate the influence of micro bond parameters on macro mechanical
response of material, a uniaxial tensile case is simulated by the SW-DVIB model. The
2D simulation specimen is shown in Fig. 2a, whose size is 5 cm × 10 cm and the
3-node triangular cell is adopted. The elastic tangent modulus E = 30 GPa.

The micro parameter α can influence the macro plastic-elastic ratio of material. The
lager the α is, the higher the macro elastoplastic ratio of material is. The simulated
result shows the relationship between the micro bond parameters and macro mechanical
property of material, which provide meaningful reference for calibration of micro bond
parameters.

3.3 Fracture Energy Conservation

In this method, the fracture energy is considered in fracture simulation to make the
simulation results independent of the mesh size. To verify the effect of fracture energy,
three-point-bending test are simulated by the two methods with and without considering
fracture energy. The specimen size and meshing scheme are shown in Fig. 3.



Elastoplastic Discretized Virtual Internal Bond Model 725

Fig. 3. Three-point-bending test specimen and meshing scheme (a) specimen size; (b) middle
mesh

In Case I, the fracture energy is not considered by the setting ε̃f = ε̃b. The input
micro bond parameters are E = 42.41 GPa,ε̃y = 1 × 10−3,ε̃b = 2 × 10−3,α =
0.2,υ = 0.2,ρ = 2700kg/m3. In Case II, the micro bond parameters are all the same as
in Case-I except for the added parameter, fracture energyGf = 45 N/ m. The simulated
load-displacement relationship of the loading point is shown in Fig. 4.

In addition to eliminating the mesh-dependence of the force-displacement curve of
the loading point, the fracture energy can also eliminate the mesh-dependence of the
simulated fracture morphology. For Case-I, due to the fracture energy is not considered,
the fracture criterion of microscopic bonds is a prescribed bond length or bond force.
Once the bond length or bond force reach the fracture criterion, this bond will break. In
this case shown in Fig. 5b-d, with the decrease of element size, the fracture morphology
is rougher. However, when fracture energy is considered in Case-II, the fracture criterion
of microscopic bonds is related to fracture energy. In this Case, as shown in Fig. 5, the
fracture morphology is independent of the element size.

Fig. 4. Simulated load-displacement relation of loading point by the methods of (a) not
considering fracture energy; (b) considering fracture energy
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Fig. 5. Simulated fracture morphology by the method; a) Case I: without considering fracture
energy for coarse mesh; b) without considering fracture energy for fine mesh, c) with considering
fracture energy for coarse; d) Case II: with consideration of fracture energy for fine mesh

Fig. 6. Loading process of the case of the square plate with a pre-crack (a) model diagram; (b)
displacement loading path

4 Simulation Examples

4.1 Elastoplastic Deformation Case

To check the performance of the present method in simulating elastoplastic deformation,
we simulate a square plate with a pre-crack. As shown in Fig. 6a, the size of simulation
specimen is 10 cm×10 cm, and there is a pre-crack in the center of the specimen,whose
length is 5 cm. The 3-node triangular cell is adopted. There are 25654 triangular cells in
the specimen. The displacement loading path is shown in Fig. 6b, the first ten seconds are
the loading phase, and the tenth to twentieth seconds are the unloading phase. The input
micro bond parameters are E = 40 GPa, ε̃y = 1 × 10−3, α = 0.2, ρ = 2400kg/m3

(Fig. 7).

4.2 Elastoplastic Fracture Simulation

A uniaxial tensile test of rock specimens with a pre-crack [35] is simulated to study
the model’s applicability in simulating material fracture. The simplified rock specimen
is shown in Fig. 8; the test aimed to investigate the influence of pre-crack dip angle
on the material’s failure behavior. The following input micro parameters are validated
E = 5.17 GPa, ε̃y = 5.1 × 10−4, ε̃b = 8.67 × 10−4, υ = 0.2, ρ = 2700kg/m3

(Fig. 9):
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Fig. 7. Simulated deformation process (a) stress-strain relationship; crack opening deformation
at (b) ε = 0, t = 0 s; (c) ε = 0.00108, t = 4 s; (d) ε = 0.003, t = 10 s

Fig. 8. Model diagram of the uniaxial tension of rock specimen with a pre-crack (a). Simulated
results for cases with different pre-crack dip angles (b) stress-strain curves; (c) peak stresses

The simulation examples suggest that the present method can be used to simulate
the fracture behaviors of the material

The simulated results shown that the fracture mechanism of specimens with pre-
cracks is mainly tensile fracture under uniaxial tensile load. With the change of the pre-
crack dip angle, the crack propagation process is basically similar, but the propagation
trajectory is different. When α = 30◦ and α = 45◦, the initial crack propagation
direction has a small deflection from the horizontal direction. When α = 90◦, the initial
crack propagation direction is consistent with the horizontal direction. The comparison
between the simulated fracture status and the experimental results [41] is shown.

Fig. 9. Comparison between simulated fracture status and experimental results [40] (a)α = 30◦;
(b)α = 45◦;(c)α = 90◦. (The left is the simulated result, and the right is experimental)
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5 Conclusion

This paper presented the elastoplastic SW-DVIB method for numerical simulation of
elastoplastic materials and its application to dynamic fracture propagation in rock. The
examples showed that the linear elastic potential SW-DVIB embedded could effectively
simulate the fracture damage of elastoplastic materials, and the simulation results do not
have the problem of cell size sensitivity, which provides a new solution to the problem of
cell size sensitivity. In the simulation example of the dynamic fracture propagation, it was
demonstrated that the fracture energy acts an essential role in the propagation of dynamic
cracks. The models consider that the energy consumed by the crack propagation of the
elastoplastic material is separated into two parts, the first part is used to produce plastic
deformation, and the second part is used for fracture failure. By embedding the plasticity
into the two-body potential of SW, the SW-DVIB can account for the plastic deformation.
Compared with the plastic DVIB developed by Ding, the SW-DVIB can represent the
variable Poisson ratio. The simulation results demonstrated that the SW-DVIB could
reproduce the loading-unloading plastic behaviors of material. The SW-DVIB promises
an approach to simulate plastic fracture propagation.
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