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Abstract. As our climate changes (non-stationarity), we face new challenges in
assessing hazard frequency and assessing the vulnerability of infrastructure to the
effects of global warming, such as changing precipitation patterns and increas-
ing ground surface temperature. The lack of appropriate incorporation of future
weather and climate information into the design, operation, and management of
infrastructure remains a significant barrier to systematically improving climate-
resilient infrastructure. In this paper, a spatiotemporal AI-powered platform for
the detection and attribution of climate non-stationarity is used to as boundary
conditions in a computational simulator to investigate the resiliency of a typical
embankment in Canada. It can be seen that considering the climate boundary
condition causes the reduction in the factor of safety of the embankment and the
change of the performance of the geosynthetic layer under the embankment.

1 Introduction

Many geotechnical engineering projects require information on ground temperature pro-
files, especially in cold climates. For instance, to choose the suitable burial depth for
utilities to prevent freezing, the annual variation of the ground temperature profile can
play a significant role. Also, it has an impact on the thermal performance of shallow
geothermal systems. Moreover, it is an indicator for possible permafrost thaw that can
adversely affect the structural integrity of northern infrastructure such as pipelines, roads,
and so on. By 2050, permafrost degradationwill have a negative impact on nearly 70% of
the arctic infrastructure, costing between $21 billion and $43 billion annually in Canada
as a result of the severe consequences of climate change [1, 2]. Therefore, assessing
the ground temperature profile and forecasting future changes over the service life of
construction projects are critical elements in developing a sustainable and climate-smart
geotechnical design.
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Ground Surface Temperature (GST) is frequently utilised in the evaluation of freeze-
thaw-induced frost action such as frost heave, thaw settlement, andwinter road operation.

The GST is frequently determined using physics-based procedures, i.e., by solving
the surface energy budget (SEB) using analytical or numericalmethods. For this purpose,
it is necessary to include all of SEB’s contributing factors, including air convection
heat fluxes at the ground surface, solar radiation, and the insulating effects of snow
cover [3]. Weather station records can be used to determine the inputs of the model,
including air temperature and snow depth, to compute either the current or previous GST.
Nevertheless, inputs that take into account future climatic patterns are needed for long-
term physics-based GST forecasting. Climate models give forecasts of meteorological
variables that may be utilised as boundary conditions in SEB analysis to compute GST
under various climatic paths. The spatial resolution of certain global climate models,
such as the Canadian Earth System Model (CanESM), is 2.8° (more than 300 km) [4]
at the time of this study, which is inadequate in many applications. Nonetheless, the
CanESM predicts temperatures near the ground surface.

While physics-based analysis of the surface energy budget (SEB) is the most precise
method for determining ground temperature, its application in real-world scenarios is
limited due to various challenges. SEB involves numerous components, physics, and
site-specific factors that require detailed modelling and multiple inputs of the land-
atmosphere energy system. Any omission of a component can significantly impact the
results, and SEB’s multiphysics simulation is computationally demanding. Thus, sim-
ulating a geospatial mesh grid at small temporal increments becomes impractical for
multi-decade research periods. Therefore, the Ground Surface Temperature (GST) is
frequently calculated using meteorological data without SEB analysis. One of the com-
monly used techniques is the n-factor method, which determines the mean seasonal GST
from air temperature and the number of days with freezing or above-zero temperatures
in the soil and air. However, this approach has limitations, such as not considering other
SEB components that can impact ground temperature and being influenced by long-term
climatic changes and interannual variations in air temperature. Thus, it is unsuitable for
GST forecasting. However, advancements in data management and machine learning
algorithms have made data-driven forecasting systems advantageous. With the increas-
ing trend of data collection and storage, data can be analyzed for correlations, patterns,
and trends. Artificial neural networks (ANN) and regression analysis can be used to
calculate the GST from measurements of air temperature and other meteorological vari-
ables, as previously demonstrated. Such data-driven approaches provide a promising
alternative to SEB analysis and can facilitate GST forecasting with improved accuracy
and efficiency. [5].

The ground’s thermal mass causes the temperature below the surface to lag behind
the air temperature [11–13]. TheGST is also affected by previous climatic conditions due
to above- and below-surface heat fluxes such as solar radiation and air convection at the
ground surface. This has been partially addressed by including the previous climatic con-
ditions in the input characteristics of artificial neural networks (ANN). In other words,
each item in the training and test input sets can represent a previous series of input
parameters [14]. While this method has considerably increased estimation accuracy,
ANNs treat data as X-Y points and not as a time series. Linear stochastic approaches,
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such as autoregressive integrated moving averages (ARIMA), have also been attempted
to predict the GST. However, this technique only considers historical trends in soil tem-
perature time series and ignores the controlling SEB components, making it unsuitable
for long-term GST forecasting.

Recurrent neural networks (RNNs) are a type of neural network specifically designed
to analyze time series data and capture temporal dynamics. Because RNNs have a chain-
like structure of repeated cells in a temporal sequence, the output of one step can influ-
ence the output of subsequent stages. This enables RNNs to store information and ana-
lyze inputs sequentially. However, when the input sequence is lengthy, backpropagation
across time in RNNs can lead to vanishing or exploding gradients. Specialized RNN
types that address this issue include long short-term memory (LSTM), gated recurrent
unit (GRU), and their derivatives, which can handle longer sequences [16]. LSTMs have
been successfully applied in various climate and earth science investigations, such as
forecasting rainfall, sea surface temperature, and restoring missing groundwater level
data [17–19]. In recent literature, there has been discussion of using LSTMs to estimate
GST from meteorological forcings [20]. However, the two-year training dataset used in
these studies may not adequately represent the interannual variability of weather, and
the accuracy of estimates at different times of the year, such as during different seasons
and yearly peaks, is unknown. Recently, Gheysari et al. [21] developed an LSTM-based
data-driven method for forecasting ground surface temperature by utilizing past ground
and air temperatures, along with other meteorological measurements. The framework
is flexible and can incorporate various components of the surface energy budget if they
have been previously measured at the site. By considering different climate change sce-
narios, the model can predict ground surface temperature under different projections
of meteorological variables without requiring additional computation. Additionally, the
framework inherently captures the underlying drivers of climate scenarios, which are
reflected in the predicted ground surface temperature.

A significant obstacle to systematically enhancing climate-resilient infrastructure is
the inadequate incorporation of future weather and climate information into the design,
operation, and management of infrastructure, particularly at spatiotemporal scales per-
tinent to particular engineering problems. The present study uses a spatiotemporal AI-
powered platform developed by Gheysari et al. [21] to identify and attribute climatic
non-stationarity in a site. This projection is then utilised as the boundary conditions in a
computational simulator to study the resilience of a typical Canadian embankment [21].

2 Data Feature Analysis

Our historical annual dataset includes GST measurements spanning from 1950 to 2021.
Based on this data, we have generated predictions for the years 2006 through 2100.
Figure 1 presents the annual measurements for historical and predicted surface temper-
atures. Based on the information presented in Fig. 1, it is evident that there is a trend of
increasing annual surface temperatures in the future.

The annual GST shows that the data is non-stationary. To verify the non-stationarity
of the annual temperature data, we conducted an Augmented Dickey-Fuller (ADF) test.
A series is non-stationary if its statistical properties such as the mean and variance
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Fig. 1. The illustration of the annual surface temperature for the historical and prediction data
[21]

Table 1. Observations of the Augmented Dickey-Fuller test for annual prediction data

Annual

Test Statistic −1.170768

p-value 0.686042

critical value (1%) −3.506057

critical value (5%) −2.894607

critical value (10%) −2.584410

change over time. In the ADF test, a test statistic and a p-value are generated. If the
p-value is less than a pre-determined significance level, typically 0.05, we reject the null
hypothesis of non-stationarity and conclude that the data is stationary. If the p-value is
greater than the significance level, we fail to reject the null hypothesis and conclude that
the data is non-stationary. Table 1 presents the results of the hypothesis tests conducted
on the annual prediction values. The p-value for the annual prediction value is 0.69,
which exceeds the significance level of 0.05. The test statistic for the annual prediction
data is −1.17, which exceeds all the critical values. These results provide evidence that
the annual data is non-stationary.

Furthermore, Fig. 2 displays the historical and predicted annual surface temperature
data for each month, spanning every 10 years from 1950. The figure reveals that surface
temperatures are projected to increase in the future, particularly in July 2060. Notably,
there is a significant difference between the predicted temperatures for June, with the
predicted temperature being higher than the other temperatures, and this difference is
particularly pronounced in 2060.

3 Effects of Climates on Slope Stability

3.1 Problem Description

This example presents the effects of climate on slope stability. The climate boundary
condition were selected from the Nunavik region presented in the previous section. An
embankment underlain by a foundation is modelled. Three different cases are considered
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Fig. 2. The illustration of the radar plot for the historical (left) and prediction (right) surface
temperature data

in this example. The first one is the model that has no geosynthetic. The second one has
geosynthetic installed to increase the shear strength reduction factor (SRF) from 1.15 to
1.25 by adding the geosynthetic layer under the embankment. The last case monitors the
climate effect over time. Comparing the results for all three cases, the impact of climate
effect on slope stability can be observed.

Note that the SRF is a metric which predicts the stability of the slope using the
finite element method. In determining the SRF, the material shear strength is gradually
reduced until the loss of numerical convergence occurs in FE (indicating that the slope
has mobilized). The SRF is the reduction factor which corresponds to the instability, and
as such, is analogous to the factor of safety for slope stability.

Model Geometry
The model used in this study comprises of a foundation layered by five types of clay.

The foundation is 24 m in height and 90 m in width. The sloped embankment on top of
the foundation consists of four materials, with a 1 m-thick first layer. The embankment
is 5 m height and 50 m width in total, with slopes on both sides.

Case 1: No geosynthetic, no climate effects (Fig. 3).
Case 2:A geosynthetic with joints as slip on both sides is added as a structural inter-

face in RS2. The geosynthetic is applied to the top of the lower embankment layer. Note
that the thermal effect on geosynthetic including the thermal expansion is considered in
this model (see Table 4). No climate effects are assumed in this case (Fig. 4).

Case 3:Ageosynthetic is included in the sameway as inmodel 2. Thermal boundary
conditions are applied to account for the climate effect on slope stability. The analysis
is taken over 150 years, which initially started in 1950. Two sets of data as discussed
in the previous section were used in the numerical analysis. From the year 1950 to
2006 the historical data was used and from 2006 to 2100 the predicted data is used in
the model. The total of 15 stages were defined in regular intervals over 150 years. A
transient thermal boundary condition is applied to the model as it can be seen in Fig. 5
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Fig. 3. Case 1 geometry

Fig. 4. Case 2 geometry

Fig. 5. Case 3 geometry and thermal boundary conditions.

3.2 Material Properties

Thematerial properties are shown in Tables 2 to 3. TheRS2 softwarewas used to perform
the shear strength reduction analysis.

The geosynthetic properties are given in Table 4. The liner properties on both sides
of the geosynthetic are given in Table 5.



Detection and Attribution of Climate Non-Stationarity … 331

Ta
bl
e
2.

M
ec
ha
ni
ca
lp

ro
pe
rt
ie
s

E
m
ba
n-
km

en
t

up
pe
r

E
m
ba
nk
-m

en
t

up
pe
r
el
as
tic

E
m
ba
nk
-m

en
t

lo
w
er

E
m
ba
nk
-m

en
t

lo
w
er

el
as
tic

C
la
y
1

C
la
y
2

C
la
y
3

C
la
y
4

C
la
y
5

In
iti
al
el
em

en
tl
oa
di
ng

Fi
el
d
st
re
ss

an
d
bo

dy
fo
rc
e

U
ni
tw

ei
gh
t(
kN

/m
3)

21
.9

21
.9

17
.2

17
.2

18
17
.5

13
.5

17
17
.5

Po
ro
si
ty

va
lu
e

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

Po
is
so
n’
s
ra
tio

0.
4

0.
4

0.
4

0.
4

0.
4

0.
4

0.
4

0.
4

0.
4

Y
ou
ng
’s
M
od
ul
us

(k
Pa
)

50
00
0

50
00
0

50
00
0

50
00
0

50
00
0

50
00
0

50
00
0

50
00
0

50
00
0

Fa
ilu

re
cr
ite

ri
on

M
oh

r-
C
ou

lo
m
b

M
at
er
ia
lt
yp
e

Pl
as
tic

E
la
st
ic

Pl
as
tic

E
la
st
ic

Pl
as
tic

Pl
as
tic

Pl
as
tic

Pl
as
tic

Pl
as
tic

Pe
ak

st
re
ng

th
Pe
ak

te
ns
ile

st
re
ng
th

(k
Pa
)

0
0

0
0

43
31

30
32

32

Pe
ak

fr
ic
tio

n
an
gl
e
(d
eg
re
es
)

35
35

33
33

0
0

0
0

0

Pe
ak

co
he
si
on

0
0

0
0

43
31

30
32

32

R
es
id
ua
l

st
re
ng

th
R
es
id
ua
l

fr
ic
tio

n
an
gl
e

(d
eg
re
es
)

35
N
/A

33
N
/A

0
0

0
0

0

R
es
id
ua
l

co
he
si
on

(k
Pa
)

0
N
/A

0
N
/A

43
31

30
32

32

D
ila
tio

n
an
gl
e

(d
eg
re
es
)

0
N
/A

0
N
/A

0
0

0
0

0

A
pp

ly
SS

R
Y
es

N
/A

Y
es

N
/A

Y
es

Y
es

Y
es

Y
es

Y
es



332 E. Kheradmand et al.

Table 3. Thermal properties

Material name Thermal
Conductivity

Quartz
content

Thermal heat
capacity

Include latent
heat

Soil specific
heat capacity
(kJ/ton/C)

Embankment
upper

Johansen 0.74 Jame Newman No 500

Embankment
upper elastic

Johansen 0.74 Jame Newman No 500

Embankment
lower

Johansen 0.74 Jame Newman No 755

Embankment
lower elastic

Johansen 0.74 Jame Newman No 500

Clay 1 Johansen 0.74 Jame Newman Yes 755

Clay 2 Johansen 0.74 Jame Newman Yes 755

Clay 3 Johansen 0.74 Jame Newman Yes 755

Clay 4 Johansen-Lu 0.74 Jame Newman Yes 755

Clay 5 Johansen-Lu 0.74 Jame Newman Yes 755

Table 4. Geosynthetic properties

Parameter Value

Liner type Geosynthetic

Geosynthetic unit weight (kN/m) 0.05

Initial Temperature (C) 2

Reinforcement type ACE Geosynthetics – ACE Grid GG30-I

Tensile modulus (kPa) 200,000

Material type Plastic

Tensile strength (peak) (kN/m) 300

Thermal properties

Activate thermal Yes

Conductivity (kW/m/C) 0

Specific heat capacity (kJ/ton/C) 1

Thermal expansion Yes

Expansion coefficient 0.00017
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Table 5. Joints properties

Parameter Value

Slip criterion Mohr-Coulomb

Peak friction angle (°) 30.96

4 Results

Figures 6, 7, 8, 9 and 10 show the maximum shear strain contours for each case, and
the axial force along the geosynthetic in cases 2 and 3. Applying the climate boundary
conditions, the geosynthetic shrank and created more tension along the geosynthetic, it
excesses the capacity of 300, the capacity reduced to residual value of 0 at the middle
section of geosynthetic (Fig. 10). Thus. The SRF further reduced to 1.15 compared to
the case with no climate boundary condition (SRF= 1.25) and the same as the case that
we have no reinforcement for the slope.

Fig. 6. Model 1 (no geosynthetic)

Fig. 7. Model 2 (no climate)
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Fig. 8. Case 2 (no climate), axial force along geosynthetic

Fig. 9. Case 3
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Fig. 10. Case 3, axial force along geosynthetic

5 Conclusion

Climate change is an important consideration for engineering design in geotechnical
problems. As demonstrated in this study, the effect of climate change can potentially
cause rises in ground temperatures and reductions to the stability of slopes such as
embankments. As prediction models continue to become prevalent in the industry, this
study has presented the use of an LSTM neural network for predicting the changes in
ground temperatures over time. The finite element method was employed to establish
a thermal simulation for the evaluation of slope stability in a simple embankment. For
solving long-term geotechnical problems, practitioners are encouraged to consider the
long-term changes to ground conditions due to climate change.
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