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Abstract. The concrete arch pre-support system (CAPS) is one of the construc-
tion methods of subway stations designed using deterministic soil strength param-
eters. A Finite Element Method (FEM) of analysis is used to calculate the design
parameters, including the factor of safety andmaximum displacement using deter-
ministic soil strength values. In this study, the random and spatial variability of soil
strength parameters for subway stations constructed using CAPS are considered
for the first time to investigate the influence of the variability of these parame-
ters on the design of subway stations. To generate spatially variable fields, first,
selected artificial borehole data are employed in order to condition the spatially
variable friction angle fields. Then, considering a typical value for the variability
of the cohesion and the possible cross-correlation between the two, the spatially
variable cohesion field is realized. Eventually, the design values are calculated
using the Finite Element Method. Indeed, in this study, the importance of consid-
ering spatial variability for soil shear strength parameters is be addressed and its
impact on the design of underground structures has been delineated. The results
demonstrate that conditioning random fields and considering the cross-correlation
between soil input parameters significantly reduce the level of uncertainty in the
analysis and helps to render more reasonable and/or reliable results as input for
design purposes.

1 Introduction

Subway station construction operations have increased significantly in recent years due
to the rapid development of urbanization. The performance of such underground struc-
tures is significantly influenced by geological uncertainties. Thus, there has been a lot
of interest in terms of investigating the effect(s) of spatial variability in soil param-
eters on this type of structure (Elkateb et al. 2003; Li et al. 2016a, b; Zhang et al.
2021b; Wang et al. 2016). It should be noted that research on tunnel stability analy-
sis are mostly limited to considering the variability of soil parameters by applying the
available probabilistic methods (e.g., random variable method (RVM)) (Hongzhan et al.
2019). The RVM disregards the spatial variability of soil parameters and model them
as random variables. Thus, this presents an insufficient description of autocorrelation
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and the true uncertainty of the soil parameters. To solve this problem, random field the-
ory was applied to characterize the soil spatial variability (Vanmarcke 2010). On this
basis, numerous stochastic techniques have been well-documented, including the ran-
dom finite element method (RFEM) (Griffiths and Fenton 2004), the stochastic response
surface method (SRSM) (Li et al. 2011, 2015) and the random finite-difference method
(RFDM) (Jamshidi Chenari and Alaie 2015; Jamshidi Chenari and Bathurst 2023). The
RFEM typically uses an unconditional random field (URF) by random field theory in
combination with the finite element method (FEM).Most researchers have deployed this
approach to investigate the effect of spatial variability of soils and rocks on geotechnical
reliability (Javankhoshdel et al. 2017; Mohammadi et al., 2019; Schweiger and Peschl
2005; Griffiths and Fenton 2004; Xiao et al. 2016; Luo and Bathurst 2018). However,
little research has been reported on applying these probabilistic methods to the reliability
of tunnel stability (Mohammadi et al. 2022). In contrast to URF, a novel approach known
as the conditional random field (CRF) is employed, which accommodates the results of
an in-situ site investigation, such as CPT data, to realize the inherent variability of the
soil parameters. Yang et al. (2017) employed the Kriging method to generate CRFs with
CPT data to study probabilistic stability of slopes. Li et al. (2016c) introduced a Markov
Chain Monte Carlo (MCMC) method for generating CRFs from borehole data in order
to represent the variability of geologic profiles. In addition, Gong et al. (2018) employed
the Hoffman technique to generate CRFs of soil properties for a probabilistic evaluation
of tunnel longitudinal performance. More recently, Sasanian et al. (2019) embarked on a
selection of RFDM-based slope stability analyses by implementing a variety of existing
site investigation data using the Kriging method. The most recent approach applied a
sparse Bayesian learning method which was presented by Ching and Phoon (2017) and
Ching et al. (2020). This method determines the statistical parameters (mean, standard
deviation, and spatial correlation length), using limited site-specific geotechnical data.
In this study, the same algorithm in combination with the RFEM analysis was used to
investigate the influence of cross-correlated conditional random fields (CCRF). For the
RFEM analyses, RS2 software (Rocscience 2022) was employed. Then, the effect of
both RVM and CCRF on stability of a subway station were investigated.

2 Methodology

The procedure used in this investigation to create CCRF is shown in Fig. 1. First, uncon-
ditional random fields were generated for friction angle. Next, 20 artificial boreholes
were created for one of the fields to extract data at specific intervals, as shown in Fig. 2.
Data intervals in the vertical direction were 0.2 m.

Table 1 displays the soil properties of the project site.
Using these artificial borehole data and sparse Bayesian learning approach, statistical

characteristics of the friction angle random field were then determined (Table 2). Next,
CRFs of friction angle were generated. The appropriate realizations for the cohesion
field were then generated using the assumed standard deviation of 13.21 for cohesion, a
cross-correlation of -0.5 between the cohesion and friction angle fields, and an algorithm
proposed by Sasanian et al. (2019). The procedure of thismethodwas illustrated in Fig. 1.
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Fig. 1. Framework of the algorithm for conditional cross-correlated random field generation

Table 1. Soil properties of the project site

Parameter Value

Unit weight γ (kN/m3) 19.5

Elastic modulus E (MPa) 44.2

Poisson’s ratio ν 0.3

Mean friction angle (°) 32.2

Mean cohesion (kPa) 26.4

Figure 3 illustrates the conditional and cross-correlated random fields of φ and c;
since these fields are negatively cross-correlated, weak zones (blue) in Fig. 3a correspond
to strong zones (green) in Fig. 3b.

3 Case Study

Figure 4 shows the geometry of the FEMmodel used in this study. Themodel’s horizontal
and vertical lengths were set to 100 m and 50 m, respectively, to reduce the boundary
effect. In this study, the soil elements were modeled using the Mohr-Coulomb (MC)
criterion, and supporting elements, such as piles, reinforced concrete arch beams, and
shotcrete, were modeled as linear elastic materials.

First, the stability of the station was investigated under conditions where both param-
eters c and φ have spatial variability and were cross-correlated. For this purpose, one of
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Fig. 2. Boreholes arrangement and subway station excavation location in cross-section (grey
outline) for the problem under study

Table 2. Measured statistical parameters of friction angle

Parameter Mean COV (%) Horizontal correlation
length (m)

Vertical correlation length
(m)

Friction angle (°) 32.2 17.5 1.65 0.97

the generated random fields for c and ϕ was considered, and the analysis results were
presented in Figs. 5, 6 and 7. These figures show that the left pile exhibits greater defor-
mation in the heterogeneous cases, a reflection of weaker soil in that very region. The
main plastic strain around the station can also be seen in Fig. 8. However, it is important
to note that the behavior of the piles can vary in different random fields, and a more
accurate estimate of the station’s behavior can be obtained by examining them.

As can be seen, at the subway station investigated in this study, under homogeneous
soil conditions, deformations are close to symmetrical and both right and left piles expe-
rience almost similar deformations (Figs. 5a-7a) (the difference in deformations is due to
the slight variation in the piles’ geometry); however, in the cases with spatial variability
of the c andφfields (for selected randomfields), themaximumdeformationwas observed
in the left pile (Figs. 5b-7b). This asymmetry in deformation is not unexpected, because
in the cases where the spatial variability of soil shear strength parameters are incorpo-
rated in the analysis, the resistance conditions of different points around the station will
not be the same, and this will lead to different deformations in various places. Moreover,
under homogeneous soil conditions, yielded elements are close to symmetrical, but in
the cases with spatial variability of the c and φ fields, the area where yielding does not
occur is more extensive. This is quite reasonable considering the resistance conditions
of the soil parameters (c & φ) in this area (Figs. 8a-8b). It is crucially important to pay



RFEM Analysis of a Subway Station 645

Fig. 3. Sample conditional and cross-correlated random fields of a) friction angle; b) cohesion

attention to this issue while designing such geotechnical structures leading to the more
realistic design of the structures.

Thus, incorporating spatial variability in the analysis can lead to asymmetrical defor-
mations and yielded elements, which can have significant implications for the safety and
performance of the structures. Therefore, it is crucial to pay attention to this issue while
designing geotechnical structures to ensure a more realistic and accurate design that
considers the variability of soil parameters in the analysis. This can help improve the
safety and reliability of geotechnical structures and prevent potential failures.
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Fig. 4. An example model used in this research

In the next step, to assess the possible advantages of the CRF over the RVM, using
the coefficient of variation of soil parameters derived from friction angle and cohesion
conditional random fields, an alternative single random variable analysis is performed.
For this purpose, the log-normal distribution for c, φ, and E parameters, as well as COVc
= 0.5, COVφ = 0.2, and COVE = 0.2 are considered, and 500 random samples were
generated using the Latin hypercube sampling method for these parameters. Then, the
probability density functions of the safety factor and the maximum displacement around
the cavity facing are investigated (Figs. 9 and 10).

As can be seen in Figs. 9 and 10, the two output variables (factor of safety and
maximum displacement), represent a normal probability density function. On the other
hand, it can be seen that the use of the CCRF not only affects the standard deviation of
the outputs, but also causes a change in the mean value. In comparison to the random
variable approach, CCRFs showed a decrease in the coefficient of variation and mean
factor of safety at approximately 84% and 1.7%, respectively. The corresponding values
for the maximum displacement are 61% decrease, and 76% increase. Additionally, for
the factor of safety and maximum displacement, there has been a reduction of 83.5%
and 15% in terms of data distribution (see Table 3). Therefore, it can be concluded that
the application of CCRF has increased the certainty of the analysis and expected to a
more realistic design.
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Fig. 5. Vertical displacement in a) homogeneous soil deposit; and b) conditioned cross-correlated
random fields soil deposit
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Fig. 6. Horizontal displacement in a) homogeneous soil deposit; and b) conditioned cross-
correlated random fields soil deposit
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Fig. 7. Total displacement in a) homogeneous soil deposit; and b) conditioned cross-correlated
random fields soil deposit for SRF of 1.78
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Fig. 8. Plastic zones formation around the subway station in a) homogeneous soil deposit; and b)
conditioned cross-correlated random fields soil deposits
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Fig. 9. Probability density functions of the maximum displacement

Fig. 10. Probability density functions of the safety factor
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Table 3. Measured lower and upper bound and coefficient of variation for the factor of safety and
maximum displacement obtained from RVM and CCRF methods

Parameter Random variable method (RVM) Cross-correlated conditional random
fields (CCRF)

Min Max COV Min Max COV

FS 1.0 3.25 0.22 1.61 1.98 0.035

Umax 0.1 0.56 0.33 0.38 0.77 0.130

Min: minimum; Max: maximum; COV: coefficient of variation

4 Conclusion

In this study, conditional cross-correlated randomfields for soil shear strength parameters
(c andφ)were generated, and the influence of these assumptionswas investigated through
the stability analyses of a subway station using RFEM. In order to generate correlated
conditional randomfields, Bayesian concepts andCholesky decompositionmethodwere
used. The results confirm that the output randomvariables (factor of safety andmaximum
vertical and horizontal displacement) follow a normal distribution. Also, distinct plastic
zones formation patterns have been reported compared to a homogeneous soil condition.
Therefore, it is possible to identify high-risk areas in the conditioned non-homogeneous
case more precisely. It is also worth mentioning that conditioning the random fields
corresponding to the shear strength parameters, based on select in-situ loggings, notably
increases the level of certainty and thus, significantly reduces the probability of failure.
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