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Abstract. Creep in rock masses is typically described as the gradual deformation
that occurs when loads are applied for long durations at varying temperatures. This
process, which may result from chemical reactions in susceptible environments,
leads to instabilities and catastrophic strength degradation in the rock masses. An
example of a susceptible environment is crystalline and sedimentary host rocks
or rock salts in deep geological repositories. Such environments are subject to the
long-term transfer of radionuclides at high temperatures. This research is focused
on the study of creep in several numerical examples under different loading condi-
tions. The simulations are conducted using finite element analysis of viscoelastic
and viscoelastoplastic materials. The former uses the knownWaste Isolation Pilot
Plant (WIPP) model, and the latter incorporates a newly proposed viscoelasto-
plastic model that integrates the WIPP and Mohr-Coulomb (MC) models. Results
are verified with available closed-form and numerical solutions.
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1 Introduction

The standard plasticity procedure, known as classical elastoplasticity, utilizes the addi-
tivity postulate of infinitesimal strain rates. It involves using a yield criterion, a flow
rule, Hook’s law, and Prager’s consistency condition. The yield criterion limits the elas-
tic response, the flow rule describes plastic deformation, Hook’s law explains elastic
deformation, and Prager’s consistency condition ensures that the system of equations is
consistent, i.e., the number of equations equals the number of unknowns. An extensive
study regarding the classical plasticity framework can be found in the books of Khan
and Huang [5] and Pietruszczak [8].

Elastoplastic behavior refers to a deformation process that is not affected by the
rate at which it occurs. On the other hand, viscous materials exhibit rate-dependent
deformation, where the rate of application of loads influences energy dissipation during
loading and unloading. Models based on various combinations of spring-dashpot-slider
idealizations are commonly used to study such problems. These models decompose the
strain rate into two parts: elastic and viscoplastic. The elastic part follows Hook’s law,
while the viscoplastic part is described bymodels such as Perzyna andDuvaut-Lions that
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allow for positive yield functions or formulations incorporating evolving yield surfaces
based on internal variables (Simo & Hughes, 1988). These internal variables depend
on strain rates and measures of accumulated plastic strain or work. Deformations are
purely elastic if the stress state does not reach the elastic limit (initial yield surface).
This study introduces a simple procedure that separates the dependence of viscous and
plastic deformation. In other words, materials can exhibit time-dependent deformations
under the proposed procedure even if the yield function is less than zero. The proposed
procedure involves an idealization of springs, dashpots, and sliding parts arranged in
series.

TheWIPP-reference models are commonly used for studying rocks’ time-dependent
deformation near radioactive waste repositories. Initially, these models were introduced
to describe viscoelastic behavior [1–4, 11, 12]. Later, theWIPP-referencemodel by Itasca
ConsultingGroup Inc. [3–4]was extended to incorporate aDrucker-Prager yield function
to account for irreversible deformations. The current study expands the WIPP-reference
creep formulation to include the Mohr-Coulomb yield function. This study’s proposed
model,WIPP-MC, incorporates the simple viscoelastoplastic procedure explained in the
previous paragraph. The applicability of the current model in finite element analysis is
demonstrated through various numerical examples.

2 Constitutive Relations

Conventions: The indicial (Einstein) notation is used throughout this section (a ref-
erence for index notation). In addition, the Cartesian coordinate system is used in the
formulations. Also, the normal stresses are assumed to be positive in tension.

Detailed derivations of the original WIPP model for viscoelastic materials can be
found in van Sambeek [12] and Itasca Consulting Group Inc. [3–4] (Program Guide:
Constitutive Models). However, this study briefly addresses the original model for
completeness.

The original WIPP-reference model does not account for the volumetric time-
dependent deformations. Accordingly, the additivity postulate of the rate of infinitesimal
strains results in

ε̇ij = ε̇vs
ij + ε̇e

ij + ε̇
p
ij (1)

where ε̇ denotes the material time derivative, ε̇ij is the rate of strain tensor, and the
superscripts e, p, and vs refer to elastic, plastic, and viscous shear parts, respectively.

The viscous shear strain rate is assumed to be coaxial with the direction of the
deviatoric stress tensor [12]. Accordingly, ε̇vs

ij is given as,

ε̇vs
ij =

√
3ε̇

2
√

J2
sij (2)

where J2 denotes the second invariant of the deviatoric stress tensor (J2 = 1
2 sijsij; where

sij = σij −σkkδij/3) and ε̇ is a temperature-dependent parameter that consists of primary
(ε̇p) and secondary parts (ε̇s) according to

ε̇ = ε̇p + ε̇s (3)
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where
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where Q is the activation energy, T denotes the temperature in Kelvin, R is the universal
gas constant, and A, B, D, n, and ε̇∗

ss are material constants of the original WIPP model.
It should be noted that εp is an internal parameter and accumulates over time.

According to the flow rule,

ε̇
p
ij = λ̇

∂g

∂σij
(6)

where g is a potential function and λ̇ is a plastic multiplier. It should be noted that if
g is equal to the yield function f , the rule is called associated - and if not, it is called
nonassociated. The Mohr-Coulomb f is used, and g is chosen to be similar to (but not
equal to) the form of f [7]. Accordingly,{

f = √
3J2 + MI1/3 − Nc = 0

g = √
3J2 + Mψ I1/3 = const.

(7)

where I1 = σkk . In addition, c is a material constant (cohesion), and⎧⎪⎪⎨
⎪⎪⎩

N = 3cosφ√
3cosθ−sinθsinφ

M = 3sinφ√
3cosθ−sinθsinφ

Mψ = 3sinψ√
3cosθ−sinθsinψ

(8)

In Eq. (8), φ and ψ are friction and dilation angles, and

sin3θ = −3
√
3

2

J3

J 3/2
2

(9)

where θ denotes the Lode angle and J3 is the third invariant of the deviatoric stress tensor
(J3 = sijsjk ski). It should be noted θ follows the representation provided by Nayak and
Zienkiewicz [6].

It should be noted that the cutting plane approach is used for the numerical integration
(stress update) of the current constitutive relations. The cutting plane approach is a
two-step algorithm that evaluates an elastic (here: viscoelastic) predictor and a plastic
corrector [10]. Details of the stress update of the current model were not explained in
this article for brevity. The WIPP-MC model presented in this study is implemented in
the finite element software RS2 [9] as a new user-defined.dll file.

3 Numerical Examples

In order to verify the applicability of the current model in finite element analyses, seven
different examples are presented in this section.
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Fig. 1. Boundary and initial conditions of the constant stress triaxial test

Table 1. Material parameters of the constant stress triaxial test

Parameter Value Unit

Gas constant, R 1.987 cal/(molK)

Activation energy, Q 12000 cal/mol

WIPP model exponent, n 4.9

WIPP model constant, A 4.56

WIPP model constant, B 127

WIPP model constant, D 1.4544 × 10−6 MPa−ns−1

Critical steady-state creep rate, ε̇∗
ss 5.39 × 10−8 s−1

Temperature, T 300 K

3.1 Constant Stress Triaxial Test (Creep Test)

This example deals with an axisymmetric finite element analysis of a cylindrical rock
mass with a radius and a height of 1m under constant stresses (Fig. 1). The constant
stresses are applied to the domain by assuming fixed radial and axial stresses throughout
the domain in equilibriumwith the corresponding boundary tractions (Fig. 1). The spatial
discretization contains only a single eight-nodded quadrilateral element. The radial and
axial stresses are −50 MPa and −100MPa, respectively. The model constants are given
in Table 1.

As depicted in Fig. 2, the material deforms over time under constant stress and
temperature, and the finite element results coincide precisely with the closed-form
solutions.

3.2 Restrained Triaxial Test (Relaxation Test)

The domain of the analysis and spatial discretization of this example are similar to those
of the first example, but the boundaries are assumed to be stationary. The stationary
boundaries result in achieving no deformation since the material is homogenous. The
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Fig. 2. Finite element (RS2) result compared with the closed-form solution

Fig. 3. Finite element (RS2) result comparedwithfinite difference (FLAC) result for the restrained
triaxial test

material constants are kept similar to those of the first example; also: K = 971.4MPa
and G = 300MPa. An initial triaxial state of stress is applied to the domain. The radial
and axial stresses are −50 MPa and −100 MPa, respectively. Figure 3 shows the result
of this example.

As expected, theMises stress reduces as time goes on (Fig. 3). TheRS2 finite element
results match precisely with the finite difference results of FLAC.

3.3 Simple Shear Test

The simple shear test is conducted on a domain of 1m × 1m under the plane strain con-
dition. The finite element mesh comprises four 3-nodded triangular elements (Fig. 4).
The material constants are similar to those of the restrained triaxial test. However, the
analysis is conducted at different velocities. In other words, a constant horizontal dis-
placement of 0.01m is applied to the top edge of the domain at different times. The
results of the analysis are depicted in Fig. 5.

As shown in Fig. 5, the developed shear stress decreases as time increases. In other
words, as the displacement is applied over lower velocities, the results approach the
closed-form solution when there is no creep. The current results match precisely those
obtained in FLAC.



On the Creep Analysis of Rock Masses … 269

Fig. 4. Boundary conditions of the simple shear test

Fig. 5. Finite element (RS2) result compared with finite difference (FLAC) result for the simple
shear test

3.4 Parallel-Plate Viscometer

This example is kept from Itasca’sVerification andExampleProblems, subsectionWIPP-
Type Models: Parallel-Plate Viscometer. It is aimed to study the creep behaviour by
using finite element analysis. The analysis domain is a viscoelastic material with K =
20700MPa and G = 12400MPa and the dimension of 20m × 10m, which is steadily
squeezed between two rigid parallel plates that are moving at a constant velocity of
10−9 m/s for a total duration of 2500 h. High cohesion and tensile strength are assigned
to the material to guarantee that the stress state lies under the yield surface so that the
material exhibits a viscoelastic response. The rest of the material constants are kept
similar to those of the constant stress triaxial example.

Under the symmetry advantages, only one-quarter of the domain is analyzed. Some
constant virtual forces are applied to the domain’s lateral (right-hand side) edge, as
introduced in the original reference. Boundary conditions and finite element mesh of
the implemented RS2 model are depicted in Fig. 6. The finite element mesh contains
four-nodded quadrilateral elements.

Figures 7a and 7b show the horizontal displacement for when there is no creep, and
there is a creep, respectively. As can be seen from this figure, the creep behaviour results
in pronounced horizontal deformation.

A parametric study of this example is depicted in Fig. 8 at different times. It can be
observed that as time goes on, the horizontal displacement increases. The results also
match with FLAC.
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Fig. 6. Boundary conditions of the parallel-plate viscometer

Fig. 7. Distribution of the horizontal displacement (m) at (a) t = 0; (b) t = 2500hr

3.5 Cylindrical Cavity

This example studies stress distribution in a large domain containing a small cylindrical
cavity where the far-field radial stress is kept at −30MPa (Fig. 9). The analyses are
conducted under the plane strain condition. In order to verify the applicability of the
current creep model in finite element simulations, the domain of the analysis is assumed
to be both viscoelastic and viscoelastoplastic. The material constraints are given in
Table 2. The finite element mesh contains 840 eight-nodded quadrilateral elements. The
finite element mesh and the boundary conditions are depicted in Fig. 9. The outer and
inner radii are 21m and 1m, respectively.

Figures 10 and 11 show an agreement between the RS2 results with the closed-form
and FLAC solutions.

3.6 Conventional Triaxial Test

In this example, a conventional triaxial test on a cylindrical sample of a viscoelastoplastic
rock mass is conducted under an axisymmetric condition. The radius and height of the
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Fig. 8. Finite element (RS2) result compared with finite difference (FLAC) result for the
viscometer test at different times

cylinder are both 1m (Fig. 10). The spatial discretization contains only a single eight-
nodded quadrilateral element. The initial radial and axial stresses are −10 MPa. The
model constants are given in Table 3 (Fig. 12).

Figure 13 depicts that the RS2 result precisely coincides with the FLAC.

3.7 Excavation

In this example, the predictive ability of the current creep model in assessing the set-
tlement induced due to the excavation of a trench and a tunnel is illustrated. The creep
constants of this example are identical to those of the conventional triaxial test. However,
elastic and shear strength properties of the layers areK = 833.3MPa,G = 1153.9MPa,
c = 3MPa, t = 3MPa, φ = 40◦, andψ = 0◦. The configuration of the problem and the
utilized finite element mesh are illustrated in Fig. 14. The finite element mesh consists
of 6-nodded (quadratic) triangular elements.

Figure 14 also shows the configuration at different stages of the analysis. The stages
include:
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Fig. 9. Boundary condition and finite element mesh of the cylindrical hole example

Table 2. Model constants of the cylindrical hole example

Parameter Value Unit

Cohesion, c 10 MPa

Friction angle, φ 0 Degree

Dilation angle, ψ 0 Degree

Shear modulus, G 300 MPa

Bulk modulus, K 971.4 MPa

Gas constant, R 1.987 cal/(molK)

Activation energy, Q 12000 cal/mol

WIPP model exponent, n 3

WIPP model constant, A 0

WIPP model constant, B 0

WIPP model constant, D 1.7535 × 10−6 MPa−ns−1

Temperature, T 300 K

Stage 1: Bringing the domain into equilibrium (t = 0)
Stage 2: Excavating the tunnel (t = 0)
Stage 3: Excavating the trench (t = 0)
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Fig. 10. Finite element (RS2) results compared with closed form solutions and finite difference
(FLAC) results for the cylindrical cavity in a viscoelastic domain

Fig. 11. Finite element (RS2) results compared with the finite difference (FLAC) results for the
cylindrical cavity in a viscoelastoplastic domain

Stage 4: Applying the surface foundation load (t = 0)
Stages 5–104: Creep analysis under sustained loads (t = 10yr)

Figure 15 shows that as time goes on, the deformation exceeds due to creep.

4 Conclusions

A new viscoelastoplastic model is proposed to study the creep behaviour of rocks in
the vicinity of radioactive waste repositories. This model is an extension of WIPP-
reference to cover irreversible deformations and uses the Mohr-Coulomb yield function.
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Fig. 12. Boundary and initial conditions of the conventional triaxial test

Table 3. Model constants of the conventional triaxial test

Parameter Value Unit

Cohesion, c 3 MPa

Friction angle, φ 35 Degree

Dilation angle, ψ 5 Degree

Shear modulus, G 300 MPa

Bulk modulus, K 971.4 MPa

Gas constant, R 1.987 cal/(molK)

Activation energy, Q 12000 cal/mol

WIPP model exponent, n 4.9

WIPP model constant, A 4.56

WIPP model constant, B 127

WIPP model constant, D 1.4544 × 10−6 MPa−ns−1

Critical steady-state creep rate, ε̇∗
ss 5.39 × 10−8 s−1

Temperature, T 300 K

It is shown that the current model can be conveniently used in the context of finite
element analysis, and the results of numerical examples are in precise agreement with
the available closed-form and finite difference (FLAC) solutions.
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Fig. 13. Finite element (RS2) results compared with finite difference (FLAC) results for the
conventional triaxial tests

Fig. 14. Configuration and the utilized mesh of the excavation test at different stages
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Fig. 15. (a) Settlement of the ground surface above the tunnel, and (b) lateral displacement of the
trench wall close to the tunnel
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