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Abstract. Accurate time failure predictions and improved geotechnical certainty
in an opencast mine will lead to tremendous safety and economic benefits. This
study utilizes interferometric synthetic aperture radar and ground-based radar data
to conduct a back analysis on slope failures that have occurred in an opencast coal
mine in South Africa. Time to failure predictions was done utilizing the inverse
velocity technique, while the effect of different data smoothing techniques on
the accuracy of the failure predictions was evaluated. Additionally, ground-based
radar data was used to calibrate a finite element numerical model to improve
geotechnical certainty. Time to failure predictions based on satellite monitoring
data was less accurate than predicted in the literature. This study confirms that
displacement measurement from ground-based radars may be used to optimize the
strength parameters of finite element numerical models. To improve the accuracy
of time to failure predictions from satellite monitoring data, it was proposed that
a satellite constellation with a shorter data acquisition time must be utilized. By
having access tomore frequent data acquisitions and by identifying themost active
points within the failure zone of a slope, it is expected that the accuracy of the
time to failure predictions can be improved.
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1 Introduction

The devastating consequences of slope failures necessitate the proactive management
of slope stability. Slope stability management involves the design, construction, and
monitoring of excavated slopes. To eliminate the potential loss of life and minimize the
damage to equipment and production time losses in opencast mines, accurate time to
failure predictions is required [1, 9]. To accurately predict the time to failure, a method is
required to measure the location and rate of displacement on slopes. The combination of
ground-based radar and InSAR monitoring proved to be highly effective in monitoring
displacement on slopes to predict their expected time to failure [2, 10].
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During the design phase of rock slopes, a stability analysis is required to obtain
a safety factor (SF) and probability of failure (POF) of the slope. This can be done
by conducting stability analysis with numerical modelling software [7]. The material
properties used in the numericalmodelling software are usually obtained from laboratory
tests and can be refined by conducting a probabilistic back analysis when a failure occurs
[6]. Alternatively, ground-based radar data and InSAR data can be utilized to calibrate
and refine sophisticated three-dimensional (3D) and two-dimensional (2D) numerical
models [5, 8, 12].

This paper will discuss the utilization of satellite InSAR monitoring data to evaluate
its ability to predict the time to failure of slopes on an opencast coal mine. Additionally,
the potential of using ground-based radar data to calibrate a finite element numerical
model to improve geotechnical certainty will be covered.

2 Methodology

Five historic slope failures were identified on an operational open-cast strip mine. A
back analysis of the failures was conducted to evaluate the effectiveness of InSAR to
predict the time to failure of slopes, utilizing the inverse velocity technique. Additionally,
the displacement measured by a real aperture ground-based radar was compared to the
displacement predicted by finite elementmodels to calibrate thematerial properties used.

2.1 Data Acquisition and Numerical Modeling

SkyGeo assisted with the back analysis of five historic slope failures at Seriti’s NewVaal
Colliery, using InSAR to measure millimeter scale displacements. The data acquired
originated from Sentinel-1 ascending orbital track T116 and descending orbital track
T50. The satellite acquires new data over the same area, once every 12 days during
each orbital repeat. The line of sight displacement data was made available on an online
viewer, displayed on either low-resolution satellite images or high-resolution digital
elevation models supplied by the mine.

Ground-based radar data was obtained fromReutech’sMSR300 trailer-mounted real
aperture radar and numerical modelling was done with Rocscience’s RS2.

2.2 Inverse Velocity Plots and Data Smoothing

Two time to failure predictionswere done for every failure. The first predictionwas based
on the average movement detected on all the radar points included within the failure
boundary. For the second time to failure prediction, a cluster of highly active points
within the failure boundary was manually identified to improve the failure prediction
accuracy as proposed in the literature [4].

Data smoothing was done in Microsoft Excel using Eqs. 1 and 2. The moving aver-
age and exponential smoothing algorithms are commonly used for noise clean-up and
data smoothing [1]. A short-term simple moving average (SMA), where the smoothed
velocity, vt, at a time, t, can be calculated with Eq. 1.

vt = vt + vt−1 + · · · + vt−(n−1)

n
(1)
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where n = 3.
An exponential smoothing function (ESF) can be calculated with Eq. 2.

vt = β.vt + (1− β).vt−1 (2)

where the smoothing factor β = 0.5.
Inverse velocity plots were not applied from the true onset of acceleration (OOA).

As proposed in the literature, the prediction was applied from the point preceding the
failure that gave the highest regression line (R2) value. This was typically the last four
to seven measurement points before the failure [3].

3 Results and Discussion

3.1 Time to Failure Prediction Accuracy and Data Smoothing Techniques

The accuracy of inverse velocity time to failure predictions is extremely variable and
relies significantly on bothmeasurement noise and the data smoothing technique that has
been applied. As predicted by the literature, the inverse velocity plots were especially
sensitive to the influence of noise when working with low velocities [1].

When evaluating the time to failure prediction accuracy, based on InSAR data with a
12-day data acquisition time, it is important to keep in mind that a significant percentage
of the overall slope displacement occurs in the final hours before the failure. A clear
correlation was observed between the accuracy of the failure prediction and the closer
the last measurement was taken before the failure.

The size of the failure also has a significant influence on the length of the pre-failure
deformation phase. Larger failures tend to show longer phases of precursor deformation
[1]. In general, slope failures in coal mines are significantly smaller in size compared to
landslides and slope failures in massive opencast mines.

The linear fit of the regression line is an indication of the quality of the data, and a
regression line value of between 0.7 to 0.9 is considered to be of sufficient quality for
the predictions [9]. Due to the excessive noise in the data, numerous failure predictions
could not satisfy this requirement and were, therefore, excluded when the averages of
the failure accuracies and regression line values were calculated.

The predicted failure times and regression line values are summarized in Table 1
and Table 2. By excluding the failures that had been affected by external influences
such as excessive rain or mechanical unconfinement and the regression line values that
were below 0.7, an average failure accuracy was calculated for the different smoothing
techniques.

The ESF resulted in more accurate time to failure predictions than the SMA (refer to
Table 2). The poor regression line values were due to the high degree of noise included
in the satellite data. Contrary to what had been found in the literature, the ESF resulted
in a better fit to the regression line than the SMA [1]. This might be because the datasets
that were analyzed for this project, in general, included an excessive amount of noise.
Positive values indicate a predicted failure date after the actual failure and negative
values indicate a predicted failure date before the actual failure date in Table 1.
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Table 1. Difference between actual andpredicted failure dates. Positive values indicate a predicted
failure date after the actual failure and negative values indicate a predicted failure date before the
actual failure date

Failure Date SMA ESF Radar Points Comments Acquisition*

21-Jun-21 +163.25 +130.35 Whole Area External influence 7 days

21-Jun-21 +19.99† +4.26 Active Points External influence 7 days

30-Apr-21 −8.73 −3.48 Whole Area Usable data 0 days

30-Apr-21 −4.82 +0.92 Active Points Usable data 0 days

01-Jan-21 +13.57† +141.1† Whole Area External influence 3 days

01-Jan-21 +5.77 +60.91† Active Points External influence 3 days

22-Oct-20 −38.41 −40.71† Whole Area Usable data 9 days

22-Oct-20 −5.37 −13.86 Active Points Usable data 9 days

30-Mar-19 −14.94† −33.71† Whole Area Noise 5 days

30-Mar-19 −15.36† −17.90 Active Points Usable data 5 days

†Regression line value below 0.7. Data is not valid
*Time difference between the last acquisition date and actual failure date

Table 2. Summary of regression line values

30-Mar-19 22-Oct-20 01-Jan-21 30-Apr-21 21-Jun-21 Average Poor
Fit

Accuracy
(days)

SMA
(WA)*

0.23 0.79 0.68 0.80 0.80 0.66 2 23.57

SMA
(AP)**

0.52 0.94 0.73 0.75 0.21 0.63 2 5.10

ESF
(WA)*

0.54 0.53 0.53 0.95 0.94 0.70 3 3.48

ESF
(AP)**

0.74 0.99 0.64 0.92 0.92 0.84 1 10.76

*WA – All radar points included in the failure zone
** AP – Only the most active radar points within the failure zone

The inaccurate failure dates might be explained by the fact the failure predictions
were not applied from a true OOA point as proposed in the literature [11]. Furthermore,
the low deformation values recorded result in the predictions being severely affected by
noise that cannot necessarily be filtered out. Except for the time to failure prediction
for the highwall failure that occurred on 30 April 2021, based on the most active radar
points, and smoothedwith the ESF, all the valid inverse plots indicated a predicted failure
date before the actual failure date.
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Based on the literature, it was expected that the accuracy of the failure prediction
should improve the closer the last measurement was taken before the actual failure
date [3]. This was observed from the time to failure predictions that had no external
influences. The most accurate prediction had a measurement hours before the actual
failure. By utilizing satellites with shorter revisit times, the accuracy of time to failure
predictions should be improved.

3.2 Numerical Modelling Results

By utilizing the displacement monitoring data from the ground-based radar the accu-
racy of the predicted displacement and failure location of the model was improved. By
reducing the strength parameters used in the model by 6%, the displacement predicted
by the finite element model in Fig. 1 correlates well with the displacement measured by
the ground-based radar at the time of failure Fig. 2. The model predicted a displacement
of 16 mm at the time of failure, while the actual displacement measured at the time of
failure was 15.6 mm. Take note that the assumption is made that the spoil creep that
preceded the failure can be ignored. The measured displacement was focused on the
actual material that failed.

Fig. 1. RS2 finite element model predicting 16 mm displacement at a safety factor of 1.04
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Fig. 2. Displacement of 15.6 mm measured by the ground-based radar at the time of failure

4 Conclusion

4.1 Time to Failure Predictions

The average error of the time to failure predictions ranged from 3.48 to 23.57 days,
a significantly larger margin of error than a couple of hours reported in the literature.
The accuracy of time to failure predictions based on InSAR data must improve to add
real value to mining operations. This may be achieved by improving data processing to
remove the noise and by utilizing satellites with shorter revisit times. Time to failure
predictions that are several days out will negatively impact production and safety in the
mine. It was observed that the accuracy of the failure predictions did improve the closer
the last measurement was taken to the actual failure date. External influences such as
mechanical unconfinement, excessive rain and pre-existing planes of weaknesses must
all be considered when attempting to predict the time to failure. The most accurate time
to failure prediction was for a circular failure that occurred in sandmaterial which had no
external influences and limited measurement noise. Time to failure predictions should
still only be used as a guideline and a reasonable factor of safety should be used when
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utilizing the inverse velocity technique to prolong production underneath a potentially
unstable slope.

4.2 Numerical Model Calibration

Strength parameters from laboratory data will remain a logical starting point for numeri-
cal models, but the utilization of radar data does have the ability to improve the accuracy
of the numerical models and reduce geotechnical uncertainty. The displacement mea-
sured directly before the failure by the ground-based radar correlated well with the
magnitude and position of the displacement predicted by the finite element model. The
original strength parameters of the site had to be decreased by 6% to achieve this. It
increased the confidence in the numerical model, as it was a close representation of what
was observed in the pit.

4.3 Recommendations

It is recommended that the utilization of InSAR data to predict time to failure on strip
mines needs to be investigated further. A target site must be identified and actively
monitored with a combination of satellites such as TerraSAR-x and PAZ to improve
data acquisition times. The use of an automatic slope failure prediction model, which
automatically identifies the most active points on a slope and does automatic time to
failure predictions as new data is acquired, is also recommended.
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