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Abstract. Slope stability issues are widely studied by geoengineers due to the
significant risk they pose to human safety and the economy. Slope failures can
be especially perilous, particularly in earthquake-prone regions, where even stat-
ically stable slopes can be triggered by dynamic loads. The pseudo-static (PS)
approach is commonly employed in the initial stages of assessing seismic slope
stability due to its effectiveness and efficiency. However, the variability of the PS
coefficient is not commonly incorporated in the realm of stochastic slope stability
analyses. In this study, the research focuses on simulating the spatial variabil-
ity of soils in seismic slope stability analysis. The approach employed involves
the integration of non-circular limit equilibrium method (LEM) of slices, Monte
Carlo (MC) simulation, and random fields, termed as non-circular 2D-RLEM. A
single random variable (SRV) approach is utilized for the pseudo-static (PS) load.
The outcomes of parametric investigations are presented as design aids, providing
valuable insights into the sensitivity of stochastic slope stability problems to var-
ious factors, including different levels of average PS loading and its uncertainty.
It was observed that the impact of assigning different values to the coefficient of
variation of seismic loading on the resulting slope failure probabilities was more
significant for larger earthquakes. Meanwhile, a higher uncertainty level of the
seismic coefficient was observed to be more critical for slopes with lower failure
probabilities (i.e. less than about 40%).
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1 Introduction

Over the past few decades, there has been a considerable amount of research focused on
slopes, encompassing both natural and man-made formations, due to their widespread
presence (Leshchinsky & San, 1994; Baker et al., 2006; Burgess et al., 2019). As slope
failure is hazardous, especially in seismic-prone areas, in terms of life safety, environ-
ment or economy, the pseudo-static (PS) approach is commonly adopted to accelerate
the seismic slope stability analysis compared to the more rigorous and computationally
less efficient dynamic analysis, which requires detailed step-by-step numerical integra-
tion in time or frequency domain analysis. The stochastic modelling of soils improves
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the quality of simulations and helps reflect a more realistic picture of the soil structure
in the models. Indeed, soil strength properties, primarily cohesion and friction angle,
exhibit inherent stochastic characteristics arising from diverse deposition conditions and
loading histories within a specific study area (Phoon and Kulhawy, 1999; Cho, 2010).
The spatial variability of these properties can considerably influence the outcomes of
geotechnical reliability analyses when accurately represented using mathematical mod-
els (Javankhoshdel et al., 2017). However, the effect of the uncertainty of the seismic load
(Youssef Abdel Massih et al., 2008; Tsompanakis et al., 2010) has not been sufficiently
explored in the realm of stochastic slope stability analysis yet. In effect, if the seismic
load (i.e. PS coefficient) is treated as a random variable, then two slopes with nominally
identical attributes can have different probabilities of failure because of the variability
(i.e. level of uncertainty) of the seismic loading. More importantly, the assessment of
the probability of slope failure is rather complicated because the seismic load can also
have spatial variability, which will be investigated in later research.

2 Literature Review

Soil properties vary spatially due to various reasons including different depositional
conditions and stress histories, as well as variations in the mineralogical composition in
an area which is known as soil inherent variability. All in situ soil properties will vary in
vertical and horizontal directions as a result of these natural processes. The investigation
of this subject has been the primary focus of the research conducted by Phoon et al.
(1995) and Phoon and Kulhawy (1999). Two statistical parameters represent the soil’s
inherent spatial variability: coefficient of variation (COV ) of inherent variability and
scale of fluctuation (SoF). The former can be obtained from detrending the soil data
which can be considered as a combination of a deterministic trend and a homogeneous
random function while the latter is an indication of the distance within which the soil
property values are strongly correlated. Stationary Gaussian random fields are most used
to model this stochastic behaviour due to the least number of inputs required (Fenton
and Griffiths, 2008; Shah Malekpoor et al., 2022).

Various algorithms for generating random fields are at disposal, such as the Turning-
bands method (TBM), Covariance matrix decomposition (CMD), Fast Fourier Trans-
form (FFT) method, and Local average subdivision (LAS)method (Fenton and Griffiths,
2008). If the specific problem demands a local average representation, such as in soil
statistical modelling, then the most suitable option is the LAS method (Fenton and
Vanmarcke, 1990). Soil stochastic attribute has been explored in various slope stabil-
ity studies using different approaches such as RFEM (Random Finite Element Method),
circular and non-circular RLEM (RandomLimit EquilibriumMethod) and RFDM (Ran-
dom Finite Difference Method) (Griffiths and Fenton, 2004; Srivastava and Babu, 2009;
Griffiths et al., 2009;Huang et al., 2010;Huang et al., 2013; Li et al., 2014; Javankhoshdel
and Bathurst, 2014; Jamshidi Chenari and Alaie, 2015; Cami et al., 2017; Javankhoshdel
et al., 2017; Burgess et al., 2019; Shah Malekpoor et al., 2020; Shah Malekpoor and
Lopez-Querol, 2022).

Non-circular RLEM using Morgenstern-Price method was first employed by Cami
et al. (2018) with the Monte Carlo technique or ‘random walking’ as the optimization
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technique in locating the low-safety-factor, noncircular surfaces. It was shown that their
approach was able to find a similar failure path to the one using the RFEM approach,
though being much more computationally efficient. Mafi et al. (2020) provided a com-
prehensive review of the literature on searching methods of critical noncircular slip
surfaces in probabilistic slope stability analysis. They demonstrated that Surface Alter-
ing Optimization (SAO) is a computationally efficient and fairly accurate method for
optimising non-circular slip surfaces.

On the other hand, in geoseismic engineering practice, slope stability is most fre-
quently evaluated using the deterministic pseudo-static (PS) method, in which constant
horizontal (and sometimes vertical) pseudo-static inertial forces are included in the safety
factor calculations. The uncertainty of the seismic demand (i.e. pseudo-static horizontal
acceleration) was considered in the development of fragility curves of a characteristic
geostructure by Tsompanakis et al. (2010) using a lognormal distribution. Youssef Abdel
Massih et al. (2008) employed the randomness of the horizontal seismic coefficient (Kh)
in the reliability analysis of a strip footing subjected to a vertical load. It was shown that
for higher values of the applied load, the effect of the random variability of the seismic
load was significant. This aspect is further explored in this paper.

3 Methodology

The research employs simple, uniform slopes consisting of single material cohesive-
frictional soils. The primary emphasis is placed on investigating the impact of the random
variability of Kh. The soil property random fields are assumed to be isotropic stationary
Gaussian, following a lognormal distribution due to their nonnegative nature, as sup-
ported by existing literature (Cho, 2007; Javankhoshdel et al., 2017). Similarly, the PS
(pseudo-static) coefficient is also assumed to follow a lognormal distribution, reflecting
the pattern of random variability (Tsompanakis et al., 2010). Additional assumptions
encompass the absence of cross-correlation between the random variables and no con-
sideration of pore pressure effects. Figure 1 illustrates the sample slope subjected to
analysis within this study.

In brief, Table 1 displays the deterministic and statistical parameter values used in the
simulations (Phoon and Kulhawy, 1999; Melo and Sharma, 2004; Jibson, 2011; Burgess
et al., 2019; Cami et al., 2020).

Fig. 1. Sample slope section
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Table 1. List of simulation parameters (Shah Malekpoor et al., 2022)

Parameter Adopted values

β, Slope angle 20° to 85°

μφ , Mean of the soil friction angle 20°

Stability number, λ = μc/ γHtanμφ 0.1, 0.3, 0.5, 0.7

μc, mean of soil cohesion Determined based on λ

μKh, mean of horizontal seismic coefficient 0.1, 0.3

COVc, coefficient of variation of soil cohesion 0.3

COVφ , coefficient of variation of soil friction angle 0.15

COVKh, coefficient of variation of horizontal seismic coefficient 0.1, 0.3, 0.5

Soil unit weight, γ 18 (kN/m3)

Slope height, H 5 m

Depth factor, D1 2

(θc,φ)Ho
2/H 40

(θc,φ)V
3/H 0.3

Non-circular RLEM (Cami et al., 2018) using Janbu-simplified combined with the
PS approach is employed in the current research. This approach reflects a more realistic
picture of the failure surface compared to the conventional circular approaches and is
called 2D- RPSLEM from now on. Before proceeding to include random variability of
the PS coefficient in this novel methodology, the 2D- RPSLEM approach was validated
with the non-circular Auto refine search method in Slide2 (Rocscience, 2023) for the
caseswhereKh is constant and the soil is spatially variable. To find the optimal number of
Monte Carlo samples, a convergence sensitivity analysis was conducted first for different
numbers of samples (Fig. 2).

4 Results

The effect of random variable seismic load on the probability of failure of a stochas-
tic slope is investigated in the current research and the results have been presented as
parametric studies. This includes the level of uncertainty of the seismic load and its mag-
nitude. Burgess et al. (2019) explored the effect of a constant level of seismic load (i.e.
PS loading) on the probability of slope failure and introduced the output of their charts
as conditional probabilities of failure, the total value of which depends on the probabil-
ity that a specific PS load would occur in a specific slope field. However, the current
research gives out the total probability values considering a lognormal distribution for
the existing PS loading.

1 The depth factor is derived by dividing the depth to the hard layer by the slope height
2 Horizontal scale of fluctuation of soil parameters.
3 Vertical scale of fluctuation of soil parameters.
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Fig. 2. Optimal number of MC samples (assuming β = 30°, μφ = 20°, λ = 0.2, μKh = 0.1, H

= 5 m, γ = 18 kN/m3, COVc = 0.3, COVφ = 0.15, COVKh = 0.5, (θc,φ)Ho/H = 40, (θc,φ)V /H
= 0.3)

As anticipated, an increase in the stability number (i.e. higher soil cohesion with
constant slope height and friction angle) leads to a reduced probability of failure for a
given slope angle under random variable PS loading. Conversely, a higher mean magni-
tude for the PS coefficient corresponds to an elevated risk of failure for a specific slope
(Figs. 3 & 4).

Figure 3 shows that different levels of uncertainty of the horizontal seismic coefficient
do not considerably affect the vulnerability of a stochastic slope for low mean levels of
input load (μKh = 0.1) while this matter becomes significantly important for a higher
load for all slope angles, see Fig. 4.

For both mean seismic coefficient values (i.e.μKh = 0.1 & 0.3), the critical or worst-
case COVKh value, which results in a higher slope probability of failure compared to
other COVKh values, changes from 0.1 to 0.5 for slopes with risk of failure less than
about 40%. For example, with respect to a high stability number slope (λ = 0.7) when
the PS coefficient mean value is increased to 0.3, a higher uncertainty level of this yields
much higher probabilities of failure compared to a constant Kh approach (Fig. 4).

It is worthy to note that the constant Kh approach (i.e. no uncertainty in the input
load) shows compatible trend with the trend in the curves of different uncertainty levels
(from COVKh = 0.1 to COVKh = 0.5) (Figs. 3 & 4).
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Fig. 3. The impact of different levels of COVKh and λ assuming μKh = 0.1, μφ = 20°, COVc =
0.3, COVφ = 0.15, (θc,φ)Ho/H = 40, (θc,φ)V /H = 0.3 with a Markovian ACF

Fig. 4. The impact of different levels of COVKh and λ assuming μKh = 0.3, μφ = 20°, COVc =
0.3, COVφ = 0.15, (θc,φ)Ho/H = 40, (θc,φ)V /H = 0.3 with a Markovian ACF

5 Conclusion

The effect of uncertain seismic load on the vulnerability of a stochastic slope is explored
in this study. The most important conclusion is the significance of this variability for the
highermean value of the seismic input load,meaning that different levels of variability of
the seismic loading impose different vulnerabilities as opposed to the low levels of mean
PS coefficient. This matter asserts the importance of considering the uncertainty levels
of the seismic loading in large earthquakes for which their equivalent PS coefficient
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is accordingly high. Meanwhile, a higher uncertainty level of the seismic coefficient
showed a more critical effect for slopes with probabilities of failure less than about 40%.
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