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Abstract. Intermediate earth pressures act on the wall when the latter has not
moved enough so that the active or passive state to be reached. These pressures
are of particular importance for designing embedded retaining walls; embedded
walls are flexible structures and along their length different soil state may exist at
the same time.Very recently, the author proposed a continuummechanics approach
for deriving earth pressure coefficients for any soil state between the at-rest state
and the active or passive state, applicable to cohesive-frictional soils and both
horizontal and vertical pseudo-static conditions. The same method also provides
analytical expression for the calculation of the required wall movement (at any
depth) for the mobilization of the active or passive failure state. In the present
paper the author suggests a new, fully analytical method for designing embedded
retaining walls, combining the proposed method with the elastic beam theory.
An application example is given along with comparison with the finite element
method.
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1 Introduction

Intermediate earth pressures act on the wall when the latter has not moved enough so that
the active or passive state to be reached. These pressures are of particular importance for
designing embedded retaining walls; embedded walls are flexible structures and along
their length different soil state may exist at the same time. The methods included in a
standard are supposed to reflect the best (current) practice. In 2001, BS 8002 [1] outlined
five “traditional” methods for designing embedded walls, mentioning, however, that all
these methods have serious shortcomings and limited applicability. These methods are:
a) the gross pressure method, b) the net available passive resistance method, c) the
strength factor method, d) the nett pressure method and e) the end fixity method. The
more recent EN1997-1:2004 [2] and prEN1997-3:2022 [3] (draft standard), on the other
hand, suggest that intermediate values of earth pressures be calculated using empirical
rules (e.g., interpolation), beam on springs models, or continuum numerical models.
However, the beamon springsmodels is also highly empirical, as empirical rules are used
for determining the spring constant. Apparently the simplistic and empirical nature of
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the above approaches raise serious queries about their validity. Thus, it seems that among
the above, the best alternative is numerical modelling. However, the intermediate earth
pressures highly depend on the initial stresses set in the program; the latter are not always
correctly defined, especially for soils having cohesion or being overconsolidated. On the
other side of the ocean (e.g., [4, 5]), things seem to be pretty much the same. The purpose
of the present paper is to suggest a reliable method for designing embedded retaining
walls. The newmethod is based on theGeneralizedCoefficient of Earth Pressure recently
proposed by the author [6], combining the theory of elastic beams from statics.

2 The Generalized Coefficient of Earth Pressure

In 2019, the author [6] derived an earth pressure coefficient for any soil state between the
at-rest state and the active or the passive state, applicable to cohesive-frictional soils and
both horizontal and vertical pseudo-static conditions, through a continuum mechanics
procedure. The basic earth pressure coefficient expression is:

KXE = 1 − (2λ − 1)sinϕm
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where, cm and ϕm are the mobilized shear strength parameters of soil, av is the vertical
pseudo-static coefficient, u is the pore water pressure and σv is the vertical total stress.
λ is a soil state coefficient being either 0 or 1, while X= O,A,P, IA or IP denoting the
at-rest, active, passive, intermediate active and intermediate passive state respectively.
The readers should bear in their mind that the “Rankine’s” form of Eq. 1, came naturally
through the continuum mechanics procedure followed. The mobilized cohesion of soil,
cm, and the mobilized internal friction angle of soil, ϕm, are calculated using Eqs. 2 and
3 respectively.
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i. The Re notation in Eq. 3 means that only the real part of the number is kept;

the imaginary part (if any) is infinitesimally small, and thus, zero.
For the active “side” of the problem (state at-rest to the active state), λ = 1 and

A0 = 1 − sinϕ′
1 + sinϕ′

(
1 − ξsinϕ′ + tanθeqtanϕ′(2 + ξ(1 − sinϕ′))) (4)
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For the passive “side” of the problem (state at-rest to the passive state):
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where, λ = 0 or 1 when A0 ≥ 1 or ≤ 1 respectively, ξ1 = 1 + ξ , ξ2 = 2/m − 1 and
ξ3 = 1 + 2ξ . ξ1, ξ2 and ξ3 are parameters related to the transition from the soil wedge
of the state at-rest to the soil wedge of the passive state.

Generally, θeq = aH/(1 − aV ) (aH is the horizontal pseudo-static coefficient), while
for both active and passive “sides”, ξ = −2/(m + 1).m is a real positive number (ranging
from 1 to +∞) calculated as follows:

m =
(
1 + (
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)
(H/z)1+
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)(
1 − 
y/
yM

)−1 (8)

m, in essence, defines any intermediate state on the active or the passive “side” of the
problem. 
yM is the required horizontal displacement for the development of the active
or passive state at the mid-height of the retained soil, that is, 
yM = 
ymax(z/H =
0.5). F or0 ≤ z/H ≤ 0.5, 
ymax is calculated using Eq. 9. For 0.5 ≤ z/H ≤ 1, 
ymax
has constant value, which is equal to the one corresponding to z/H = 0.5.
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K =KOE − KAE orKPE−KOE , depending on the case examined while E and ν are
the elastic modulus and Poisson’s ratio of the retained soil. 
ymax becomes maximum
for z/H = 0.5. 
x in Eq. 8 is the deflection of the wall at any depth z, calculated based
on the elastic beam theory.

The total earth pressure (at any depth) acting perpendicular to a vertical or nearly
vertical retaining structure for any soil state X , therefore, is

σXE = KXE(σv − u) + u (10)

An exhaustive validation of Pantelidis’ [6] continuum mechanics method against
contemporary centrifuge tests and finite elements can be found in Pantelidis and
Christodoulou [7]. The above formulae will be used herein for introducing a newmethod
for designing embedded retaining walls.

3 Application Example and Numerical Validation

The analysis that follows combines the earth pressure method proposed by the author
[6] and the elastic beam theory (simple cantilever beam). The example presented herein
has been solved both with the proposed analytical method (using KWall v.1 educational
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software prepared byDr Panagiotis Christodoulou and the author) andwith Rocscience’s
RS2 (for validation purposes). The geometry, mesh and boundary conditions of the
problem are shown in Fig. 1. The wall is free to bend from z = 0 to 10 m, while below
the z = 10 m depth point, the wall is practically fixed. In the analytical procedure
both the translational and rotational components of movement was assumed zero. In the
numerical procedure, the anchorage of the wall was achieved setting a horizontal nodal
displacement as low as 0.1 mm for z = 10 to 15 m. This very small nodal displacement
was imposed in the lower five meters of the wall instead of using a very stiff soil layer for
obtaining more stable results. The wall which has flexural rigidity EW IW = 1.5GPa ·m4

functions in a homogenous, isotropic mass with cohesion c′ = 0 kPa, internal friction
angle ϕ′ = 30°, unit weight γ = 20 kN/m3, Young’s modulusE = 20MPa and Poisson’s
ratio ν = 0.3. Pore-water pressures and seismic excitation was ignored for the sake of
simplicity.

Favoring reproduction of the example problem, all relevant information is given
below (if something is not mentioned, the RS2 default value was used). The “Gaussian
elimination” solver type was used. Regarding the “stress analysis” menu, the maximum
number of iterationswas 1000, the tolerancewas set to 0.001, while the “comprehensive”
convergence type was adopted. The “mesh type” was set to “graded”, while 6-noded
triangular elements were used (meaning 19.0 nodes/m2 or 9.2 elements/m2; see Fig. 1).
The “field stress type” was “gravity” with “stress ratio” in- and out-of-plane equal to 0.5
(recall Eq. 1 for the soil considered, 
x = 0 m and aH = aV = 0). The “initial element
loading” was “field stress and body force”. The problem was solved statically (aH =
aV = 0). The soil parameters were those given earlier (apparently, the “plastic” material
type was chosen). The wall was modeled as “structural interface”, with a “standard
beam” element as liner and a “joint” element on both sides. The liner was considered to
be “elastic” with Young’s modulus Ew = 15·106 kPa and thickness 1.0627 m (moment
of inertia Iw = 1.06273·1/12 = 0.1 m4); this combination of values gives the EwIw =

Fig. 1. Geometry of the problem. Also, geometry, mesh and boundary conditions of the RS2
model used
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1.5·106 kPa·m4 (beam stiffness) value used by the author in the analytical solution (the
Poisson’s ratio of the liner was 0.01, while the “Timoshenko” beam element formulation
was adopted). Regarding “joint”, the “material dependent” slip criterionwas chosenwith
“interface coefficient” as low as 0.05 (it is reminded that the proposed earth pressure
analysis method is for smooth walls. Both the normal and shear stiffness of the joint
element was set to 200 MPa/m.

Regarding the proposed analytical procedure, the deflection 
y (at any depth z) is
calculated based on the elastic beam theory, where the embedded wall of Fig. 1 is treated
as a cantilever beam; the earth pressures on the two sides of thewall constitute the loading
acting on the beam, where the principle of superposition stands. An iterative procedure
is needed. As a starting point (1st iteration), it is logical and convenient to assume that
the soil on both sides of the wall is at the state at-rest (that is, 
y = 0 m, meaning that
Eq. 1 is applied for m = 1). However, since HA > HP , this state, cannot be true (at least
for the majority of points along the wall); the embedded wall will have the tendency
to bend towards the passive “side” (controlled more or less by the flexural rigidity of
the wall). The deflection (
ytot) of the wall caused by the combined action of the earth
pressure distributions acting on the two sides of the wall is then calculated. For the 2nd
iteration these 
ytot values are the 
x data values and so on, until convergence to be
achieved. Five iterations were adequate for obtaining stable results. The final results, as
these have been obtained in the last (5th) iteration are shown in chart form in Figs. 2 and
3.

In the chart of Fig. 2 the analytically and numerically derived deflection values of the
wall have been drawn against depth; the 
ymax,A and 
ymax,P values (for the active and
passive state respectively) are also shown on the same chart. In this respect, a number of
observations can be made: a) the proposed method effectively calculated the deflection

Fig. 2. Deflection of embedded wall versus depth chart
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Fig. 3. Chart showing the earth pressures on both sides of the embedded wall. The dashed lines
simple indicate the “active”, “passive” and “at-rest” state

of the embedded wall, b) an active failure state zone exists near the top of the wall
(
ytot ≥ 
ymax,A), while for the rest of the soil mass adjacent to the wall, the soil is
at an intermediate active or passive state, and d) the analytical solution shows that the
soil on the passive “side” of the problem is far from failure; besides, a deflection as low
as 4.5 mm (maximum deflection, referring to zP = 0 m) is not able to cause an active
failure in the spesific soil, let alone a passive one.

The analytical and numerical earth pressure distributions have been drawn against
depth in Fig. 3. As shown, the two “active” curves (the analytical and the numerical
ones) match very well to each other. Also, as expected, for z > 10 m (that is, for z
below the theoretical fixed point of the wall), both curves coincide with the theoretical
earth pressure at-rest distribution. For the passive state the analytical curve shows earth
pressures closer to the respective earth pressures at-rest, something that can be justified by
the small deflection values with respect to the respective 
ymax,P threshold values. The
“passive” numerical curve, on the other hand, shows a very peculiar behavior with great
intermediate earth pressure values which, indeed, for 6m < z < 7m (0m ≤ zP ≤ 1m)
are extremely close to the passive state ones. In addition, for z > 10 m, where the wall
has been held practically still, the numerical earth pressures are (much) greater than the
logically expected earth pressures at-rest. Apparently, the earth pressure at-rest values
on the active “side” should also stand for the passive “side”; this discrepancy has to do
with the numerical procedure and cannot be explained by the author.
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4 Conclusions

The knowledge of intermediate earth pressures (i.e., earth pressures between the at-rest
state of soil and the active or the passive one) is very important in designing embedded
retaining structures. However, in the absence of a reliable method for calculating these
pressures (which depend on the amount of movement and bending of the flexible wall),
the various design standardsworldwide rely on simplistic approaches,major assumptions
and empirical rules andparameters. Thiswayof dealingwith intermediate earth pressures
was so far a “necessary evil”, with the reliability of the results to rather be under dispute.

In this paper a new, fully analytical method for designing embedded retaining walls
has been suggested. This combines the earth pressure theory proposed in 2019 by the
author with the elastic beam theory. An application example is given, indicating remark-
able agreementwith the finite elementmethod. The effectiveness of the proposedmethod
refers not only to the calculation of the earth pressures but also to the calculation of the
deflection profile of the wall. Comparison with the finite element method showed excel-
lent agreement. Indeed, a great advantage of the proposedmethod against finite elements
is the stability of the results.

Finally, given the rationality and the effectiveness of the proposed method, the latter
could replace the existing crude and semi-empirical methods which not only lacks solid
theoretical basis but also, thorough calibration and thus, leading to more cost effective
and more reliable structures.
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the copyright holder.

http://creativecommons.org/licenses/by-nc/4.0/

	An Analytical Method for Designing Embedded Retaining Walls
	1 Introduction
	2 The Generalized Coefficient of Earth Pressure
	3 Application Example and Numerical Validation
	4 Conclusions
	References


