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Abstract. We define a novel normalized loss function to quantitatively evaluate
the goodness-of-fit between simulated and measured rockfall trajectories using
elapsed time and sampled rock positions. This loss function is optimized to back-
analyze the coefficients of restitution Ry and Rt using a Monte-Carlo search of
the parameter set O = [Ry, Ry, vg] where vy is the initial horizontal velocity. The
trajectories are simulated assuming lumped mass rocks with initially horizontal
projectiles and zero rotation. While our results are derived using position as the
loss term, we note that our framework is entirely compatible with velocity or
energy as a loss term as suggested by other researchers. The efficacy of the back-
analysis framework is examined using synthetic and measured rockfall trajectories
from a copper mine in British Columbia, Canada. The Monte Carlo search reveals
significant non-uniqueness in the back-analyzed values of R, and R¢, which can
be mitigated by joint back-analysis that stacks the loss contour of multiple target
trajectories. Parametric studies suggest that a minimum of 10,000 Monte Carlo
samples should be simulated for an accurate solution, and that the spatial resolu-
tion of the topography is linearly correlated to the minimum loss. This measured
trajectory was also used to test the viability of scaling R, by velocity and mass.
Our results suggest that velocity scaling performs similarly (12% deviation from
measured path) to a static Ry value (9% deviation) while the measured trajectory
cannot be satisfactorily reproduced (43% deviation) when scaling R, by mass.

Keywords: Rockfall - parametric studies - back-analysis - Monte Carlo

1 Introduction

Rockfall hazard mitigation relies on estimates of their potential trajectories. Caviezel
et al. [1] posits these trajectories are primarily controlled by the initial state of the
projectile and its rock-slope interactions. There is significant uncertainty around the
parametrization of these rock-slope interactions since laboratory test data are difficult to
scale to the field [2]. Therefore, there is a need for tools to parameterize rockfall simula-
tions using in-situ data. Full-scale induced rockfall experiments, where rock projectiles
are manually cast from slopes of interest, can be used to measure the in-situ material
properties and hence constrain rockfall simulators. Specifically, radar trackers [3] or
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imaging [4] can be employed to measure the trajectory of the induced rockfall event.
One or multiple rockfall simulators can then be tuned to produce a modelled 2D or 3D
trajectory that approximates the measured trajectory. This match can be defined on the
basis of metrics such as bounce height, runout distance, and runout locations [5-7].

This procedure, where the model parameters and, in some cases, initial projectile
state are adjusted to match the modelled trajectory with the measured one, is commonly
termed back-analysis. Currently, these parameters are adjusted manually in small incre-
ments until the solution is qualitatively deemed sufficiently close [6]. This heuristic
approach is particularly inherently limited for rockfall modelling which is non-smooth
and non-unique owing to discrete impact events and sharp changes in topography. The
present study proposed a framework to quantify the back-analysis procedure in terms
of 1) the goodness-of-fit between a measured and modelled rockfall trajectory, and 2) a
Monte Carlo search to determine how this goodness-of-fit varies with the coefficients of
restitution.

2 Methodology

2.1 Rockfall Parametrization

We use the RocFall3 software v1.007 to simulate rockfall trajectories, where the primary
inputs are the slope material properties, the mass and volume of the seeder (i.e. rock
source), the initial position and velocity of the seeder, and the topography. Here, we
back-analyze only for the material properties of the slope and the initial velocity of the
seeder, given that the remaining inputs are assumed to be well constrained. Furthermore,
we consider a lumped-mass generalization to reduce parameters of interest to the initial
velocity (vp) of seeders, and the normal and tangential coefficient of restitution (R, &
R¢) of the rock slope.

The coefficient of restitution (COR) in RocFall3 lumped-mass method describes the
ratio of outbound to inbound velocity [8]. The normal COR (R;,) is the ratio of velocity
components perpendicular to the slope surface at the impact point, while the tangential
COR (Ry) denotes the ratio parallel to the slope surface. Due to energy dissipation, the
velocity decreases after each bounce resulting in an outbound velocity lower than the
inbound one. Hence, we allow R;, and R; to vary uniformly in the range [0, 1]. The initial
speed (vo) is a scalar denoting the magnitude of the cast-out velocity of a seeder and
cannot be assumed to be zero for rockfall experiments where rocks are manually cast
from a slope. The direction of cast-out velocity is defined by trend and dip. The trend is
set based on the initial measured trajectory. The dip is set to 0 assuming a horizontally
launched projectile. We assume zero initial rotation.

In this work, we include two types of datasets: measured paths and synthetic paths.
The measured paths are trajectories measured by radar trackers from IDS GeoRadar
on real slopes. They demonstrate the applicability of the framework. However, it is
challenging to explore the accuracy of the workflow with measured paths since we do
not know the true values of R, and Ry. Thus, we introduce synthetic paths which take
a simulated trajectory as the target trajectory to be matched by the back-analysis. They
facilitate parametric investigation of the accuracy and precision of our framework under
a range of conditions.
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2.2 Loss Function

The key question for back-analysis is to quantitively define a ‘good match’ between a
measured trajectory and its corresponding modelled trajectory. We quantify the differ-
ence using a loss function expressed in Eq. (1). In the equation, x and y are the coordinates
of a target sampled location along the rockfall trajectory in a local cartesian coordinate
system. The y-axis is aligned with north. The hatted variables X, ¥ denote a modelled
sampled location along the modelled rockfall trajectory in the same local co-ordinate
system. The ¢ denotes the time stamp of a sampled location, hence, (x, y), denotes the
location of the rock at time step . The operator |I.. .|l returns the distance between the two
given locations. Note that elevations are not generally well constrained by radar tracking
and may differ from the modelled topography - they are therefore not considered in the
present study. Each misfit vector is defined from sample points on the target trajectory
and to the modelled sample point with closest time stamp. The misfit vectors are depicted
as orange arrows in Fig. 1. We sum the magnitude of all misfit vectors to obtain a single
value of total misfit denoted as the loss between a measured and a modelled path. The
loss is then normalized by the total travel distance of the target trajectory to avoid bias
against longer trajectories. The k in the denominator denotes the k-th sample location
as a variable to iterate through all target sample locations along the measured rockfall
trajectory.
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A target sample location may match multiple modelled sample locations as shown by
the last sample location in Fig. 1. This usually occurs at the last target location when the
modelled trajectory has a longer duration than the target trajectory. Conversely, the last
location of the modelled trajectory may match multiple target locations if the modelled
trajectory has shorter duration than the target path. This feature penalizes modelled
trajectories with either too short or too long durations.

Finally, we conduct a Monte Carlo search of the parameter set 8 = [vg, Ry, R¢]
and denote the optimal back-analyzed parameter set 6* as those with lowest loss. The
following sections describe the details of this optimization using synthetic paths and
then measured rockfall trajectories from an open pit mine in British Columbia (BC),
Canada.

3 Back-Analysis of Synthetic Trajectories

We first explore the applicability of the loss function and parameter search on syn-
thetic datasets generated from a high-resolution open-pit mine topography. Details of
the topography can be found in Tutorial 1 from the Rocfall3 manual [9].

We assign the slope material to limestone with R, = 0.315, R = 0.712. Next, we
cast 5 seeders and assign their trajectories as target synthetic trajectories. The cast-out
locations of the 5 target seeders are shown in Fig. 2. They are placed at representative
locations around the pit, including a steep slope, a shallow slope, and corners. These
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Fig. 1. Schematic plot for loss function. Loss is the summation of the magnitude of misfit vectors
normalized by the total travel distance of the target trajectory. The modelled locations are matched
to the target locations on the basis of time elapsed since the start of the rockfall event

locations are intended to test our framework against a range of potential rockfall trajec-
tories. All seeders are assigned initial velocity directions towards the pit as indicated in
Table 1. Figure 3a illustrates the rockfall path corresponding to Seeder#2, which serves
as the target trajectory for results discussed in Sects. 3.1 and 3.2. Seeders are additionally
assigned the following parameters:

e weight of 1000kg, density of 2.7 ton/m>
e placed 5 m above the slope surface
e initial speed 1.5 m/s in horizontal direction without any rotation

Figure 3b shows the range of modelled trajectories generated in the process of our
Monte Carlo search of the parameter set 6 = [vg, Ry, R¢]. We use uniform distributions
as we have limited a priori information, specifically vg € [0, 5] m/s, R, € [0, 1], R; €
[0, 1].

Simulations are performed on a Windows workstation with 64GB RAM, and a core
19-12900K processor. No graphic processing unit is involved.

Sections 3.1 and 3.2 explore the effect of the number of Monte Carlo samples and the
effect of the topography resolution respectively. In each case, the dependent variable is the
loss defined by Eq. (1). Increasing the number of modelled trajectories can improve the
accuracy of the optimum solution but requires more computation. Profiling the minimum
loss over the number of modelled trajectories give us a preliminary estimation on the
random search efficiency. The topography resolution is an open question for any task
involving remote sensing. Its impact is more significant for back-analysis since one must
digitize the topography at a finite resolution. To investigate the importance of topography
resolution, we down-sample the topography to a range of resolutions and measure the
degree of misfit at each resolution using Eq. (1).

Sections 3.1 and 3.2 demonstrate that the back-analysis can be highly non-unique
[10]. To overcome this limitation, we demonstrate that summing the loss from multiple
target trajectories at the same site can return a more reliable estimation on R, and R;.
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b)

Fig. 2. Tllustration of the 5 seeder locations for the synthetic dataset in a) plan view and b) oblique
view. Seeders are placed 5 m above the slope surface. Seeder#2 is discussed in Sects. 3.1 and 3.2.
Other seeders are discussed in Sect. 3.3

Table 1. Summary of setup and back-analysis of the 5 target trajectories, together with stacked
optimal fit and true v, Ry, R¢ values

Seeders# Trend(deg) Back-analyzed parameter set 6*
Vo Rn R¢

1 45 1.488 0.30 0.77
2 0 1.581 0.32 0.69
3 270 1.543 0.30 0.70
4 225 1.417 0.32 0.75
5 135 1.507 0.34 0.63
Stacked - - 0.29 0.77
Otrue - 1.500 0.315 0.712

3.1 Number of Seeders

To explore the number of required samples for the Monte Carlo search, we conduct
5 back-analyses with 50,000, 25,000, 10,000, 5,000, and 1,000 modelled trajectories.
These simulations share a common target trajectory denoted as Seeder#2 in Fig. 2 with
parameter set Oy, indicated in Table 1. Figure 4 depicts the loss calculated by Eq. 1
from various realizations of 6 = [R;, R¢, vo].

Note that we visualize the reconstructed loss contour on the R,-R¢ plane with loss
expressed by color intensity since the coefficients of restitution are the primary outcomes
of the back-analysis. It is only necessary to vary vg in the Monte Carlo search because
the true initial velocity is difficult to measure in the field since the radar instruments
are sparsely sampled in time. Moreover, the grainy pattern allows us to evaluate the
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a) The target trajectory b) Modelled trajectories

Fig. 3. Illustration of trajectories generated by seeder#2 with a) the single target trajectory and b)
modelled trajectories using a Monte Carlo search. The color of trajectory indicates instantaneous
speed. Blue is low speed, and red is high speed. Each modelled trajectory is simulated using a
randomly drawn set of 6 = [Rp, Ry, vg]

uncertainty of loss value over the varying initial speed. For instance, Fig. 4a exhibits a
diagonal region of decreased loss and a relatively consistent color pattern at the upper
left corner, i.e., lower uncertainty in this region. The diagonal region of decreased loss
spreads out at the lower right end, which indicates the loss becomes more unstable.
Meanwhile, the lower triangular region is more stable in terms of loss. It implies that
loss varies less when Ry is less than half of R,. The modelled trajectories using these
values of R, and R; may not be able to gain enough outbound normal speed and stop in
the vicinity of their first impact location. The misfit of these trajectories consists mainly
of the penalty on total distance. The upper triangular region, on the other hand, exhibits
predominantly high loss over 0.6. Trajectories in this region exhibit unrealistically long
runout distances.

The diagonal region of low loss appears in all contours regardless of the number
of trajectories, indicating a range of 6 = [R;, Ry, vo] that all produce approximately
the same trajectory as the target. However, the resolution of the loss contour improves
with the number of Monte Carlo samples but does not fully resolve the issue of non-
uniqueness in the solution space. The dark and bright patches in Fig. 4e are larger than
Fig. 4a while the locations of the patches are similar.

Figure 5 depicts how the number of Monte Carlo samples affects the optimum param-
eter set 6* = [Ry*, R¢*, vo*] and corresponding minimum loss. All 4 parameters become
more stable when there are more than 10,000 samples. The minimum loss decreases expo-
nentially with increasing number of seeders. vo varies from 1.4 m/s to 1.9 m/s, which
only comprises 10% of the entire assigned search range of 5 m/s. We conservatively
simulate 50,000 samples for subsequent back-analyses, which is by our computational
capacity. The loss is expected to further improve with more samples and would also
benefit from a more sophisticated optimization strategy.
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Fig. 4. Loss contour at different number of Monte Carlo simulations. Darker color indicates lower
loss (better fit between target and back-analyzed trajectory). The red star marks out the minimum
loss. The irregular dark patches are caused by stacking results at various initial velocities
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Fig. 5. The minimum loss (loss) plotted on left ordinate and corresponding optimum initial veloc-
ity (vq), normal coefficient of restitution (Ry), and tangential coefficient of restitution (R¢) on right
ordinate over the number of Monte Carlo samples

3.2 Topography Resolution

Here, we conduct the back-analysis of seeder#2’s trajectory at 100%, 50%, 20%, 10%
of the original topography resolution to explore how the quality of the digital elevation
model affects the quality of rockfall trajectory back-analysis. Figure 6 shows the loss
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a) Downsampling Rate: 10%

b) Downsampling Rate: 20% c) Downsampling Rate: 50% d) Downsampling Rate: 100%

1.0 0.0 1.0 0.0 1.00.0 1.0

Fig. 6. The loss contour at down sampling rate a) 10% b) 20% c) 50% d) 100% with minimum
loss indicated by the red star. R, and R¢ are uniformly simulated between O and 1. Initial velocity
vg ranges from 0 to 5 m/s. 50,000 Monte Carlo simulations are shown in each panel

contour at these down-sampling rates. The diagonal region of decreased loss becomes
less pronounced as the topography resolution decreases. The minimum loss value also
decreases with decreasing resolution, i.e. poor topography resolution reduces our abil-
ity to back-analyze the target trajectory. The upper triangular region, on the contrary,
does not change significantly. Trajectories modelled using high values of R, and R;
feature fewer rock-slope interactions and so are less sensitive to topography resolution.
Consequently, the deviation between the best modelled and target trajectories increases
when topography resolution decreases. It is noteworthy that minimum loss is found
at the boundary of the search space at 10% and 20% resolution as shown in Fig. 6a
and b. Figure 6a supports the assertion that minimizing rock-slope interaction at a low-
resolution topography approximates the target path. Figure 6b shows the best fit at zero
R but 100% normal restitution, i.e., the tangential velocity is zeroed after each impact
but no velocity dissipation occurs in the normal direction. The trajectory is terminated
once the angle between the inbound velocity and slope is too small. This is an appar-
ent violation of physics and highlights the importance of topography resolution in 3D
geomechanical modelling.

We express the down sampling rate as an equivalent grid spacing by assuming the
triangular grid is evenly distributed and treating the area of 2 triangles as a unit square
grid. Figure 7 illustrates the minimum loss increases linearly with decreasing grid reso-
Iution. The points on the x-axis from left to right corresponds to 100%, 50%, 20%, 10%
down sampled topography.

3.3 Joint Back-Analysis Using Multiple Target Trajectories

The loss contours presented in Fig. 4 and Fig. 6 suggest significant non-uniqueness in
the back-analysis, i.e. a range of 6 = [Ry, R, vo] can all produce a similar trajectory
to the target. This can also be seen in Table 1, where the optimal vy is larger than the
true value for seeder#2 and seeder#4. This non-uniqueness can be mitigated by stacking
(summing) the loss contours from multiple measured trajectories, i.e. we jointly back-
analyze R, and R; using target trajectories from all 5 seeders shown in Fig. 2, rather
than only relying on a single trajectory. This is shown in Fig. 8, which includes the mean
loss contour from all 5 target trajectories alongside the loss contour from the individual
target trajectories. Note that we plot the loss function at vo = 1.5m/s to better visualize
the optimum solution. Overall, Fig. 8f) exhibits a smaller region of low loss than the
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Fig. 8. R; R¢ loss contour at initial speed of 1.5 m/s for back-analysis of Seeder#1 to #5. Panel
f) shows the mean of panels a)-e)

loss contours of individual trajectories as seen in Fig. 8a - e, reflecting a higher degree
of confidence in the optimal solution set.

4 Back-Analysis of Rockfall Trajectory Measured at an Open-Pit
Mine in BC, Canada

Here we demonstrate the efficacy of our back-analysis framework using a rockfall tra-
jectory measured using a radar tracker at a copper open pit mine in British Columbia,
Canada. The rock slope consists primarily of bornite and calcite, and the topography is
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a) All modelled trajectories b) Optimal fit trajectory

Fig. 9. Back-analysis of a rockfall trajectory measured at an open-pit mine in BC. a) all Monte
Carlo sampled modelled trajectories, b) best-fit back-analyzed trajectory

obtained from the native Rocfall3 terrain generator. The back-analysis framework is the
same as with the synthetic dataset except that the target trajectory is measured in the field
and thus the true values of Oye = [V, Ry, R¢] are unknown. The pit and back-analyzed
rockfall trajectory are shown in Fig. 9. Figure 9a shows all modelled trajectories gener-
ated through the Monte Carlo search. The majority of the modelled rockfall events runout
to the bottom of the pit. The measured and optimal trajectory shown in Fig. 9b arrests
prior to the crest of the bench, which presents a discrete constraint for the back-analysis.

4.1 Results

Figure 10a depicts the loss contour derived from 50,000 Monte Carlo samples of mod-
elled trajectories. An offset diagonal region of low loss separates the contour into 2
parts. The lower left occupies a larger area, where loss generally ranges from 0.4 to 0.6.
Conversely, the upper right corner predominantly comprises trajectories with loss over
0.7 as illustrated by a bright color pattern. The region of low loss is located closer to the
upper right corner compared with that in the synthetic dataset. It implies the measured
trajectory has more inertia than the simulated target trajectories. Thus, the low loss tra-
jectories reflect scenarios where most of the energy is retained after each impact, i.e.,
higher R, and R;.

The best fit is obtained at R, = 0.90 and R; = 0.63. Figure 10b portrays a plan view
of the measured and optimal back-analyzed modelled trajectories. The first 3 sampled
points from the modelled path aligns well with the measured path but diverges from
the 4th sampled point. Since the tracker measures rock position at regular intervals, the
increasing distance between adjacent points indicates the measured rock is accelerating
while traveling from X;e] = 10m to X;e] = 40m. The modelled trajectory is again con-
sistent with the measured locations at the end of the rockfall trajectory. We suspect that
this mismatch during the middle of the trajectory can be attributed to limited topography
resolution, which is supported by the ‘crossmatch’ labeled by the blue arrow in Fig. 10b.
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Fig. 10. Back-analysis of a rockfall trajectory measured at an open-pit mine in BC. a) loss contour
with respect to Ry and Ry at any vq. Star marks the minimum loss b) plan view of measured and
best-fit modelled trajectories. The cyan points represent locations utilized in loss calculation.
Magenta arrows visualize the misfit vectors. X and Y¢] denotes the local cartesian coordinate
system. The blue arrow in b) highlights an intriguing ‘crossmatch’ potentially resulting from
limited topography resolution

4.2 Velocity and Mass Dependency of R,

Pfeiffer and Bowen [11] suggested that the normal coefficient of restitution (R,) should
be scaled according to the instantaneous speed at the impact or mass of the rock. The
former is denoted as Velocity damping expressed by Eq. (2), where Vyocx denotes the
speed at the impact and the scaling factor K = 9.144. The latter is denoted as Mass
damping expressed by Eq. (3), where Mok denotes the mass of the rock and the scaling
factor C = 1000.

(14 (Vioek /K)?)
Ry
(1 + (Mrock/C)z)

R, (Velocity) = ;K =9.144 )

R) (Mass) = ; C = 1000 3)

Here, we explore whether these scaling factors improve the back-analysis of the measured
rockfall trajectory. We set vo = 3.17 m/s according to the previous analysis to reduce the
number of free parameters and accordingly reduce the number of Monte Carlo samples
to 5,000. We show the most representative trajectories in Fig. 11 among the top 3 fits.
We see that the velocity scaling (Fig. 11b) results in a slightly worse-fitting modelled
trajectory compared to a static R, (Fig. 11a), and that the simulator is unable to produce
a realistic rockfall trajectory using mass scaling (Fig. 11c).
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Fig. 11. Back-analysis of the measured trajectory shown in Fig. 10 using a) static Ry value
b) velocity-scaled Ry, and c¢) mass-scaled Ry with loss contours and plan views of trajectories
simulated by the annotated parameter sets. The star and annotation refer to the 3rd best-fit

5 Conclusion

We define a new normalized loss function to quantitatively evaluate the goodness-of-fit
between simulated and measured rockfall trajectories using elapsed time and sampled
rock positions. This loss function is optimized to back-analyze the coefficients of resti-
tution R, and R; using a Monte-Carlo search of the parameter set 8 = [R;,, Ry, vo]. The
trajectories are simulated assuming lumped mass rocks with initially horizontal projec-
tiles and zero rotation. While our results are derived using position as the loss term, we
note that our framework is entirely compatible with velocity or energy as a loss term as
suggested by other researchers.

The efficacy of the back-analysis framework is examined using synthetic and mea-
sured rockfall trajectories from a copper mine in BC. The Monte Carlo search reveals
significant non-uniqueness in the back-analyzed values of R, and R, which can be mit-
igated by joint back-analysis that stacks the loss contour of multiple target trajectories.
Parametric studies suggest that the number of Monte Carlo samples is critical to obtain
an accurate solution, which depends on the specific topography of interest. Additionally,
we find the spatial resolution of the topography is linearly correlated to the minimum
loss. Our methodology satisfactorily reproduces a rockfall trajectory measured using a
radar tracker at a copper mine in BC. This measured trajectory was also used to test the
viability of scaling R, by velocity and mass. Our results suggest that velocity scaling per-
forms similarly to a static Rn value while the measured trajectory cannot be reproduced
when scaling Rn by mass.

We note two major limitations to the proposed method. Firstly, the Monte Carlo
search strategy is computationally expensive, and the method would benefit from a more
efficient optimizer. Secondly, the proposed method does not attribute an uncertainty to the
optimal parameter set — as always it is the responsibility of the engineer to qualitatively
verify the similarity of the modelled and measured trajectories, and whether the inverted
parameters are reasonable.
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