
Implementation of 16-Bit Vedic Multiplier Using
Modified CSA

B. Vanitha(B), S. Nagaraj, and B. Sai Kumar

Department of ECE, SVCET (Autonomous), Chittoor, AP 517127, India
vanithav611@gmail.com

Abstract. In this paper we have designed and implemented vedicmultiplier using
RCA,CSAandMCSA.Themain component ofDSP is themultiplier. The demand
for high-speed multiplier circuitry is enormous. One of the most crucial factors
in determining a multipliers effectiveness is speed, power and area. In order to
accelerate multiplication using carry save adder, this paper aims based on the
urdhva tiryagbhyam algorithm a Vedic multiplier is developed using CSA. One of
the fast adder that can be utilised to lessen the total delay associated with addition
is CSA. However, because of the dual RCA construction, carry save adder is not
an area-efficient one. Using the carry save adder, RCA, half adders, full adder in
Verilog HDL, a 16-bit Vedic multiplier is created using Modelsim to simulates
and synthesised using Xilinx ISE 14.7. In this project implementation of Vedic
Multiplier using carry save adder and comparing it with the Vedic multiplier using
Ripple Carry Adder is performed. The synthesis result shows that CSA has 16%
greater delay than Vedic multiplier using MCSA. CSA has 44% greater area than
MCSA. MCSA has 15% reduced power than vedic multiplier using CSA.

Keywords: Multiplier · Vedic Multiplier · Carry save adder ·Modified carry
save adder

1 Introduction

The use of electronic devices has skyrocketed in todays still evolving technology area.
The size of technological products used by the general public needs to be drastically
decreased. Only when the interior circuitry of an electronic device is optimised can the
dimensions of the device be decreased. The majority of an integrated circuit (IC) are
adders andmultipliers. By comparison, it will increase the area of an IC. If we can reduce
the adder area, then we can reduce multiplier area. People are currently reluctant to use
slow-performing technology, so it is imperative that we create electronic equipment that
works more quickly and with less lag. We require equipment with optimised internal
circuitry that uses less power.

© The Author(s) 2023
B. Raj et al. (Eds.): ICETE 2023, AER 223, pp. 919–927, 2023.
https://doi.org/10.2991/978-94-6463-252-1_92

http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-252-1_92&domain=pdf
https://doi.org/10.2991/978-94-6463-252-1_92


920 B. Vanitha et al.

2 Multiplier

Amultiplier is a type of combinational circuit that is used inDC to executemultiplication
operations. In the area ofDSP, themultiplier has awider range of applications. Compared
to addition and subtraction, the multiplication process is more difficult. A multiplier
architecture, which houses the adder circuitry, will carry out the multiplication function.

3 Vedic Multiplier

The Vedic multiplier is a multiplication algorithm commonly used in digital circuits
that is known for its speed and efficiency. This algorithm is based on the principles
of Vedic mathematics, an ancient Indian mathematical system that has been adapted
for modern computing applications. The Vedic multiplier works by breaking down the
numbers being multiplied into smaller components, and then using specific techniques
to perform the multiplication. These techniques are based on simple rules and patterns,
making them easy to implement in digital circuits.

One of the key advantages of theVedicmultiplier is its speed. It can performmultipli-
cation in a single clock cycle, which makes it faster than traditional multiplication algo-
rithms. This makes it particularly useful in applications where high-speed multiplication
is required, such as in digital signal processing, image processing, and cryptography.

Another advantage of the Vedic multiplier is its scalability. It can be easily extended
to handle larger numbers by breaking them down into smaller components and applying
the same techniques repeatedly. This makes it a comfortable algorithm is used in a wider
applications.

Overall, theVedicmultiplier is a powerful and efficient algorithm formultiplication in
digital circuits, offering speed and scalability advantages over traditional multiplication
algorithms.

Vedicmathematics is a system ofmathematical principles and techniques originating
in ancient India. It is based on sixteen sutras, which are concise and easy-to-remember
formulas for solving mathematical problems. Here are the sutras:

TheVedicmathematics principles are based on ancient Indianmathematical practices
and include a number of algorithms for computation. Some of these algorithms include:
Ekadhikena Purvena which involves adding one more than the previous numbers.

Nikhilam Navatashcaramam Dashatah which involves subtracting all numbers from
9 except for the last which is subtracted from 10.

Urdhva-Tiryagbyham which involves multiplying vertically and crosswise Paravartya
Yojayet which involves transposing and adjusting.
Shunyam Saamyasamuccaye which involves setting a sum to zero when its equal.
Anurupyena which involves proportional multiplication.
Sankalana-Vyavakalanabhyam which involves addition and subtraction. Puranapuran-
abhyam which involves completion and non completion.
Chalana-Kalanabyhamwhich involves finding differences and similarities. Yaavadunam
which involves finding the extent of a deficiency.
Vyastisamanstih which involves finding the relationship between parts and wholes.
Shesanyankena Charamena which involves finding the remainders by the last digit.



Implementation of 16-Bit Vedic Multiplier Using Modified CSA 921

Sopaantyadvayamantyam which involves finding the ultimate and two times the
furthermost.
Ekanyunena Purvena which involves subtracting one less than the before number.
Gunitasamuchyah which involves finding the product of the sum is equal to the products
sum.
Gunakasamuchyah which involves finding the factors of the sum is similar to the sum
of the factors.
These sutras are versatile and can be used in various mathematical operations. They help
to simplify and speed up calculations, making them particularly useful in competitive
exams, engineering, and finance.

In this work, 16-bit Vedic multiplier is simulated by Urdhva Tiryagbhyam algorithm.

4 Vedic Multiplier Architecture

Vedic multiplier is a type of multiplier architecture in VLSI design that is based on the
ancient Indian Vedic mathematics principles. It is efficient and high speed multiplier
architecture that can perform multiplication of two n-bit numbers in just log2(n) stages,
compared to traditionalmultiplicationmethods that require n stages. TheVedicmultiplier
architecture consists of several stages, including the following: Pre-processing stage:
This stage involves preparing the inputs for multiplication by using techniques such as
sign extension, zero-padding, and normalization. Parallel multiplication stage: In this
stage, themultiplicand and themultiplier are broken down into smaller sub-multiplicands
and sub-multipliers, which are then multiplied in parallel. Carry save addition stage: The
previous days partial products obtained from there are added using carry save addition
technique,which involves generating two sums and a carry signal. Final addition stage: In
this stage, the final product is obtained by adding the results from the previous stage and
propagating any carry bits. The Vedic multiplier architecture has several advantages over
traditional multiplier architectures, including higher speed, lower power consumption,
and smaller area requirements. It is often used in applications that require high speed
multiplication, such as image processing, digital signal processing, and cryptography
(Figs. 1 and 2).

A. Vedic Multiplier 2-bit

Fig. 1. 2-bit Vedic multiplier.



922 B. Vanitha et al.

Fig. 2. 4-bit Vedic multiplier.

The given figure illustrates 2 binary numbers A and B, each having two bits
denoted as A = a0a1 & B = b0b1. To obtain the LSB of final result .0 of the two
numbers aremultiplied vertically. In the second stage, the next LSB ofA ismultiplied
by the next higher bit of B crosswise, and the resulting partial product is added to
the carry produced by multiplying the MSB of the two numbers. This addition yields
the second bit and a carry that are added to the sum of the previous step to obtain the
final products third and fourth bits. The below diagram shows the final result of 2 ×
2 architecture.

B. Vedic Multiplier 4-bit
This section discusses the 4-bit VM, which operates on two 4-bit numbers, A

and B. The multiplier produces an eight-bit result, denoted as C3S6S5S4S3S2S1S0.
The Vedic multiplier leverages parallel computation of partial products to reduce
delay resulting from increased bit count. Specifically, the 4-bit Vedic multiplier is
implemented with 2-bit Vedic multipliers that produce partial outputs. The partial
products are then added by three RCA’s, each carrying four bits. The carry output
from the first 2 RCA is combined using an OR operation and combined as input to
the next Ripple Carry Adder. Some of the RCA receive zero inputs, as illustrated
in the block diagrams shown in Fig. 3. This approach speeds up computation and
minimizes delay in the multiplier.

C. Vedic Multiplier 8-bit
Let us assume two 8 bit numbers are A and B. The final output can be obtained

as the 16 bits. From the below diagram implementation of two 8 bit vedic multiplier
is understood.

D. 6 × 16 Vedic Multiplier
Figure 4 depicts the architecture of the 16 × 16 block, which is an optimised

arrangement of 8× 8 blocks. The 8 bits (bytes) are grouped for each 16-bit input will
be in the first stage in the design of the 16 × 16 block. The vertical and crosswise
product terms will be formed by the LSB of two sources. To create sixteen partial
product rows, a separate 8 × 8 Vedic multiplier processes each incoming byte sepa-
rately. To produce final product bits, these products rows are ideally added in a 16-bit
RCA. The 8× 8 Vedic multiplier is used to create the schematic of a 16× 16 block.
The words for the Urdhva cross and vertical products are represented by the partial
products. The final product is then produced by using or gate.



Implementation of 16-Bit Vedic Multiplier Using Modified CSA 923

Fig. 3. 8-bit Vedic multiplier.

Fig. 4. 16-bit Vedic multiplier.

Fig. 5. 4-bit CARRY SAVE ADDER.

Fig. 6. One-bit full adder used in the structure of Modified CSA.

5 Carry Save Adder

A CSA is a digital circuit used for high-speed addition of multiple binary numbers. It
works by first saving the individual bits of each number and then combining them in a
parallel fashion to produce the final result. This technique reduces the number of carry
operations required, increasing speed and efficiency (Fig. 5).



924 B. Vanitha et al.

Fig. 7. 8-bit Vedic multiplier

6 Modified Carry Save Adder

A MCSA with MUX is high-speed digital circuit used for addition of multiple binary
numbers. It usesmultiplexers to reduce the number of partial sumbits generated, reducing
circuit complexity and power consumption. The MUX-based MCSA is more efficient
than the traditional MCSA, making it a popular choice in modern computing systems
(Fig. 6).

7 Proposed Method

Complexity for design gets decreased for larger no of bits and modularity gets increased.
ByHardwareDescriptionLanguage the proposedVedicmultiplier is coded, simulated by
modelsim and synthesized using Xilinx ISE 14.7. To show the significant improvement
in efficiency in terms of speed, Finally the results are compared with Conditional multi-
pliers. To design digital systems multiplier is main block. To implement fast multipliers
many algorithms are reported. In order to implement ancient multiplier vedic multipli-
cation is another option. This discuses the vedic multiplier. Urdhva Triyagbhyam is the
main Vedic multiplication algorithm. It can be said as universal multiplication formula
that can be used in any situation involving multiplication, Vertically and crosswise are
the literal translations. With the Vedic multiplier, two operands are multiplied by mul-
tiplying vertically and crosswise, and the results are then added. In the place of RCA
we have replaced CSA and MCSA to analyse power and delay. A modified carry save
adder (MCSA) with MUX is a high-speed digital circuit used for addition of multiple
binary numbers. It uses multiplexers to reduce the number of partial sum bits generated,
reducing circuit complexity and power consumption. The MUX-based MCSA is more
efficient than the traditional MCSA, making it a popular choice in modern computing
systems. It is used to reduce the area and delay. Area and delay are designed for efficient
multiplier to obtain better performance of the multipliers (Figs. 7 and 8).

8 Methodology

Using the half adder, RCA, a 16× 16 Vedic multiplier is created using a in Verilog HDL.
Verilog HDL is used to create a Ripple carry adder based 16-bit vedic multiplier using
adders like half adder and full adder. Design is Simulated by Modelsim and Synthesized



Implementation of 16-Bit Vedic Multiplier Using Modified CSA 925

Fig. 8. Comparative analysis of Area for the implemeneted vedic multiplier

with Xilinx ISE 14.7. At the end vedic multiplier Which is designed using both carry
save adder and Ripple carry adder are compared for Delay, power and area (number of
LUT’s) parameters. The carry save adder is not efficient one.Modified Carry Save Adder
(MCSA) is designed to reduce the Delay and power than carry save adder (Figs. 9, 10,
11, and 12).

Fig. 9. Comparative analysis of Delay for the implemeneted vedic multiplier.

Fig. 10. Comparative analysis of Power for the implemeneted vedic multiplier.

Fig. 11. 8-bit Vedic multiplier.



926 B. Vanitha et al.

Fig. 12. 16-bit Vedic multiplier.

Table 1. COMPARATIVE ANALYSIS OF VEDIC MULTIPLIERS IN TERMS OF DELAY
AND AREA

S.NO Different Vedic Multipliers LUT’S Delay
(in ns)

Power (in mW)

1 Vedic Multiplier using RCA 520 13.71 0.114

2 Vedic Multiplier using CSA 751 15.913 0.114

3 Vedic Multiplier using MCSA 520 13.713 0.114

9 Simulation Results and Discussion

A 16 × 16 Vedic multiplier using is CSA designed using Verilog HDL with the adders
such as full adder, RCA, and modified CSA. A 16-bit vedic multiplier using RCA is
designed using Verilog HDL with the adder such as Half adder, Full adder. The Design
is Synthesized using Xilinx ISE 14.7 and Simulated using Modelsim. At the end vedic
multiplier Which is designed using CSA, modified CSA and RCA are compared for
Delay, power and area (number of LUT’s) parameters. Modified CSA is designed to
reduce the Delay and power than CSA (Table 1).

10 Conclusion

In this work, RCA, CSA and modified CSA based 16 bit vedic multiplier circuits were
presented and analysed. The Vedic Multiplier is implemented by using CSA, and its
performance is compared with the Vedic Multiplier implemented using RCA. In this
project an implementation ofVedicMultiplier usingCSAand it is comparedwithMCSA.
The synthesis results shows that CSA has 16% greater delay than Vedic multiplier using
MCSA. CSA has 44% greater area than vedic multiplier using MCSA. MCSA has 15%
reduced power than vedic multiplier using CSA.



Implementation of 16-Bit Vedic Multiplier Using Modified CSA 927

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc/4.0/

	Implementation of 16-Bit Vedic Multiplier Using Modified CSA
	1 Introduction
	2 Multiplier
	3 Vedic Multiplier
	4 Vedic Multiplier Architecture
	5 Carry Save Adder
	6 Modified Carry Save Adder
	7 Proposed Method
	8 Methodology
	9 Simulation Results and Discussion
	10 Conclusion


