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Abstract. Resource block allocation in cellular networks plays a vital role in
defining the efficient use of the spectrum and maximizing user density. The
resource blocks, also referred to as “payload,” is a wagon carrying the actual
user data, and this study uses machine learning to forecast the needed payload
for cellular consumers. They are payload as a target feature from the simulated
large dataset with different frequency bands of arbitrary service provider cell sites.
XGBOOST Regression ML model is used to optimize the payload allocation to
various cell sites. The complete design is implemented in Google Colaboratory
(Colab). It is an open-source cloud platform.
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1 Introduction

Experiencing the rise in economic growth and information and communication technol-
ogy, the way the communication systems are evolving to handle the voluminous data
is the research’s outcome. Providing high-quality services by the service providers is a
Hercules task. On the other hand, the increase of mobile users and providing them with
resource blocks, thereby increasing the throughput efficiency of the network, is making
the networks engineers night mere. Based on the available resource blocks, they can
decide when to proceed with the call. The channels are allocated so that the interference
level is minimal, as shown in Fig. 1. A single base station is expected to serve sev-
eral hundred IoT-type devices and thousands of mobile devices. Hundreds of network
parameters must be configured to optimize network parameters to accommodate the
dense traffic. This drives the mobile networks to self-optimization from the enormous
data collected from the network and processing it.

Mobile network usage patterns trends, such as higher traffic density in downlink
compared to uplink changing rapidly. As billions of IoT devices exchange small junk
of data on uplink and downlink networks, the LTE-A performance degrades. The net-
work utilization on both links will increase significantly, and allocating small payload
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Fig. 1. Basic Cellular System

resources to the vast number of densely spread IoT devices is a Hercules task. The allo-
cation of small payloads efficiently is the prime area of research by many designers to
pack multiple data from various devices into a single sub-frame by handling collisions
intelligently. By means of allocating large buffers, the transmission overhead can be
managed effectively and send the frames orderly. Alternatively, clustering the nearby
devices and integrating their payload into a single structure with less overhead can also
reduce the complexity of the allocation problem.

Channel allocation is traditionally classified as a static and dynamic problem. The
static channel allocation procedure allocates the predefined channels to each cell site
based on the channel interference technique. In a non-uniform user distribution among
the cell sites, the network utilization is inefficient and results in revenue loss. Signal inter-
ference to noise ratio-based channel allocation, referred to as dynamic channel allocation
schemes, provides relatively good network utilization efficiency. Hybrid Channel Allo-
cation (HCA) schemes are developed based on the advantages of both static and dynamic
channel allocation. When a user makes a call, the fixed set of channels allocated is first
utilized. If the fixed sets are completely utilized, then dynamic sets are used.

As the user data has undergone tremendous changes based on different applications,
social networks, IoT device data, and machine-to-machine communication, resource
allocation under variable packet sizes and channel conditions using static, dynamic,
or hybrid allocation schemes are no more efficient. Mobile networks integrated with
ML algorithms help to moment-by-moment traffic management without more human
interactions and make the network more reliable without congestion.

This paper is organized as follows: Sect. 2 briefly describes the related work of
network traffic congestion and channel assignment approaches with ML. Section 3
explained about design model with the regression method. Section 4 is the complete
implementation with results and discussion, and Sect. 5 is the conclusion.

2 Related Work

Every user in a cellular network is provided with a resource block to have fruitful com-
munication. As the number of resource blocks is limited, much work is carried out to
allocate among the users to meet user demand efficiently. In the case of OFDM, each
resource block has 12 sub-carriers with 6/7 OFDM symbols. That means each resource
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block of a total of 72/84 resource elements that can support variable bandwidths such
as 1.4MHz, 3MHz, 5SMHz, 10MHz, 15MHz, and 20MHz. Broadly payload allocation
strategies [1] are classified as Fixed Channel (FCA), Dynamic Channel (DCA), Borrow-
ing Channel (BCA), and Hybrid Channel (HCA). Mobile traffic is constantly changing;
the DCA is the most effective strategy [2].

Resource allocation can be expressed mathematically as a relation to the influence
of channels on input signals and can enhance the performance of various operations
between the transmitter and receiver. The channel assignment problem is solved in this
letter [3] using a convex optimization-based approach and machine learning techniques.
Due to the higher cost of acquiring new customers than keeping existing ones, client
churn is challenging for telecom businesses. This research [4] forecasts client turnover
based on machine learning models.

Machine learning (ML) can solve complex problems without explicit programming
[5]. The use of ML in wireless communication achieves a marginal increase in terms of
increased user connectivity, enhanced data rates, and coverage. Real-time traffic clas-
sifiers must overcome the problems of the actual world. Researchers [6] put forth an
innovative approach in which ML classifiers are trained using statistical characteristics
computed across several brief sub-flows derived from entire flows produced by the target
application.

Automatic feature learning is a capability of deep learning, and researchers have
attempted to use it and found improved accuracy. Researchers [7] described popular
deep-learning (DL) techniques and how they are used to traffic categorization challenges.
DL, a subset of artificial intelligence (Al), is used to optimize the parameters under study
by continuously training and learning as proposed in [8]. Reviews of the modern research
trends in DL as intelligent communication is applied to different frameworks proposed
in 5G technologies to cater to low latency and more services. They include wireless
optical communication, Cognitive Radio, Channel estimation, Edge/Fog Computing,
and end-to-end encoder/Decoder.

The volume of traffic data using big data technologies and machine learning tech-
niques is analyzed in [9]. Designers look into ML-based classification systems based on
a statistically independent payload with random variables such as arrival time and packet
length [10]. ML-based I-FOREST and LOF models [11] were considered in the study
to find anomalies in large datasets to detect smoke and gas leaks in gated communities.

The fifth generation of mobile communication accommodates three application
scenarios: eMBB, uRLLC, and nmMTC. Wireless communication [12] systems must
continue evolving with artificial intelligence (AI) development to satisfy the criteria.
Machine learning is intended to optimize wireless networks by solving challenging
tasks. The IoT Internet of Things is made up of equipment and gadgets with a variety of
sensors connected via wireless networks. Proposed [13] Machine learning (ML) can be
used to design, develop and optimize wireless channel encoders.

This paper proposes the XGBOOST regression machine learning model to optimize
resource block allocation of payload in cellular networks. Colab was used to simulate
the environment, and allocation was done with an accuracy of 99.8467%.
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3 Design Model

The Design model is represented in Fig. 2, and the functions of various sub-blocks are
explained below:

Dataset: Various data samples make up a dataset. This collection is often displayed
in a tabular format [14]. Each column details a distinct aspect. And each row represents
a certain data set participant. The values of each feature, such as the cell id, channel
bandwidth, cell utilization, average throughput, payload, or random number values, are
used as described in data sets.

Data pre-processing: The step involves observing the entire data and removing any
null data if present and converting object data types into int or float form, and reshaping
the data to further processing.

Parametric Separating: The variables that are fed into the machine learning models
are referred to as features and represent every column in the dataset, and their selection
has an effect on the final outcome.

Train-Test-Split: Data is divided into two parts: training data and testing data.
More percentage of data is provided for understanding the data, and processing is called
training data. The remaining data is used for testing, and the accuracy & predictions of
the final outcome are identified from the testing data.

XG BOOST Regression: The mean learning model XGBoost, which entails training
and merging many models to provide a single prediction, is used in this study. The payload
and a utilization term are both objective function components.

Data Prediction: In ML, “prediction” refers to the outcome of an algorithm used
to anticipate the likelihood of a specific result since the system is trained on the history
dataset and applied to a new dataset.

Accuracy score: The reliable predictions of accuracy is a fundamental outcome and
are mathematically modeled by dividing the total number of predictions by the number
of predictions that were accurate.

Accuracy = (Number of correct predictions) /(Total number of predictions) (D

Telecom Data Parametric Decision Box
Dataset Pre-processing Separation (Train-Test-Split) “
€

Import
XG BOOST Data Accuracy Visualization
Regression Prediction Score of Data
Model

Fig. 2. Design model block diagram
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4 Results & Discussion

The dataset considered for evaluating the performance has features such as cell ID, eNB-
ID, channel bandwidth, Layers, Cell utilization, Capacity, and Payload. Figure 3 shows
that each feature is characterized by this work. The channel bandwidths considered are
5, 10, 15, and 20 MHz, with various layers of L900, L1800, L2100, and mMIMO. A
total of 12 features, as shown in Fig. 3, was considered, and the data size consists of
30,000 instances.

Seaborn Library was utilized for exploring & understanding the data. It gives a
graphical representation of the selected features. It examined that a more significant
number of cells contains 15MHz channel Bandwidth out of 5,10,15,20 MHz, as presented
in Fig. 4.

The distribution plots for analyzing the payload and the cell utilization are obtained
by contrasting the observed data, and the expected results are shown in Figs. 5 and 6.

The aim is to optimize the channel’s payload by considering the target ‘Payload in
GB.’ It is observed that the payload is linearly proportional to channel utilization, as
shown in Fig. 7. It also observed the correlation factor between the target feature and

[ 1 dataframe.info()

<class 'pandas.core.frame.DataFrame’>
RangeIndex: 30000 entries, © to 29999
Data columns (total 12 columns):

#  Column Non-Null Count Dtype
0 Cell ID 30000 non-null int64
1 eNB ID 30000 non-null int64
2 Cell 30000 non-null int64
3  Dist 30000 non-null object
4 ChBW(MHz) 30000 non-null int64
5  Layer 30000 non-null object
6  Capacity@1e0% GB 30000 non-null float64
7  Capacity@oe% GB 30000 non-null float64
8 Cell utilization 30000 non-null float64
9 Payload GB 30000 non-null float64

10 Avg DL User Thrpt 24 Hrs Mbps 30000 non-null float64
11 Avg DL User Thrpt DBH Hrs Mbps 30000 non-null float64
dtypes: float64(6), int64(4), object(2)
memorv usase: 2.7+ MB

Fig. 3. Data frame

count

5 10 15 20
ChBW(MHz)

Fig. 4. Channel bandwidth statistical representation
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other features, as shown in Fig. 8, analyzed that ‘Payload GB’ has a 0.8 correlation factor
out of 1 with ‘Cell utilization.’

The data splitting is done into two parts: training and testing data, with training at
80% & testing data at 20% with the help of the ‘train-test-split’ command, as represented
in Fig. 9.

Considered three different threshold levels in target (Payload GB) as:

i. <= 50 for LOW
ii. 51 to 200 for MEDIUM
iii. >200 for HIGH.

..
400
!
300

200

Payload GB

100 oo °° b

0 100 200 300 400 500 600 700
Cell Utilization

Fig. 7. Relation between payload vs. cell utilization
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Fig. 8. Correlation Matrix

[92] X_train,X test,Y_train,Y_test = train_test _split(X,Y,test_size=0.2,random_state=2)

[93] print(X.shape,X_train,shape,X_test.shape)
(30000, 10) (24000, 10) (6000, 10)

Fig. 9. Train-Test-Split

Obtained pictorial representation as illustrated in Fig. 10 & numerical count in
Fig. 11.

XGBOOST Regression model for optimum evaluation was considered. The steps
are evaluated internally when the model is deployed as given below:

The execution steps of hidden layers are represented below.

Step 1: Make an initial prediction and calculate Residuals.

Residuals = Original samples — predicted samples 2)

Step 2: Develop the XGBOOST model tree

Similarity score = (sum of Residuals)2 /(Number of Residuals + 1) 3

Low MEDIUM HIGH
payload_class

Fig. 10. Payload Classification
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(98] dataframe['payload_class'].value_counts()

MEDIUM 16440
LOW 13082
HIGH 478
Name: payload_class, dtype: int64

Fig. 11. Payload Classification count

Where \ is the regularization parameter, and the default value is 1.
Step 3: Prune the tree.
Step 4: Estimating the output values of leaves

Output value = Sum of Residuals/(Number of Residuals + A) 4

Step 5: Now make a new prediction.

Step 6: Calculating the new predictions using Residuals.

Step 7: Repeat steps 2 to 6.

After evaluating the model by training data, we need to predict the optimum payload
instances using test data similar to Fig. 12.

Table 1 represents the comparison of the actual payload vs. the Optimum payload
out of many instances picked and random samples representation.

Optimized payload) — (Actuat Payload
%payloadz( Iptimized payload) — (Actuat Payload) % (100) 5)
Actual Payload

From the table, visualize that for the same channel, we can enhance or decrement
the payload without affecting the channel bandwidth and cell splitting. Then at the user

41] test_data_prediction = model.predict(X_test)
print(test_data_prediction)

[23.180405 20.331095 67.68988 ... 74.10544 21.16056 77.63958 ]

Fig. 12. Test Data Prediction

Table 1. Optimized payloads of channel

S.NO. Actual Optimized payload % Of Improvement/ Reduction
payload

1 19.69958 23.18041 17.66952123

2 20.84458 20.3311 -2.463412197

3 66.965 67.68988 1.08247592

4 18.9525 21.16056 11.65049466

5 79.22167 77.63958 -1.99703826
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Test data Accuracy score

[44] model.score(X_test,Y_test)*100

99.84674071704767

Fig. 13. Accuracy Score

Predictions
.

10 10
True Values

Fig. 14. Actual vs. Predictions Payload samples

end, customer services will be handled easily. The overall accuracy score obtained from
the XGBOOST regression model is 99.8467%, as shown in Fig. 13.

The pictorial visualization of the payload samples in Fig. 14, it indicates the true and
predicted instances of each sample lie at a smaller distance from the hyperplane, and the
closure is proportional to accuracy.

5 Conclusion

This paper is developed in Colab, an open-source tool suitable for machine learning.
XGBOOST regression model was considered for the implementation written in Python
script. The feature considered was payload optimized against 12 features such as cell
ID, eNB-ID, channel bandwidth, Layers, Cell utilization, Capacity and Payload, and
channel bandwidths considered are 5, 10, 15, and 20 MHz, with various layers of L900,
L1800, L2100, and mMIMO. The prediction using the XGBOOST regression algorithm
for optimum ranking of payload achieved an accuracy score of 99.8467%. The future
scope is to study the various model behavior with more datasets obtained from the service
providers in predicting payload optimization.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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