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Abstract. Hard metals are highly preferred in critical applications to withstand
severe stresses and deformations. But they pose difficulties while machining in
the form of rapid tool-wear and poor dimensional accuracy of the work-pieces.
In conventional practice, hard metals are annealed to facilitate machining and
hardness is restored back after machining. This is followed by grinding operation
to finish the components. Hence, each component undergoes two stages of heat
treatment and grinding operation additionally, which increases production time
and cost apart from higher process rejections. This study and experimental work
are carried out to facilitate direct machining of hard metals without the need of
heat treatment and grinding operations. As any machining operation is highly
influenced by the tool geometry, in the current experiments, the tool geometry
is varied and corresponding machining forces are measured. Using experimental
data, mathematical model is formulated with Artificial Neural Networks to relate
the machining force with tool-geometry. Optimum tool geometry for minimum
of the machining force is identified using Genetic Algorithm and the same is
validated experimentally. The result shows that the machining forces are least at
the optimum tool geometry to facilitate direct machining of hard metals.

Keywords: Hard metals - Tool Geometry - Machining Force - Mathematical
Modelling - Artificial Neural Networks - Optimization - Genetic Algorithm -
Experimental Validation

1 Introduction

Hard metals are extensively used in critical applications in view of their superior func-
tional characteristics. But they show poor machinability and pose hurdles in the form
of rapid tool wear, excessive tool consumption, poor surface finish, thermal distortions
and dimensional in-accuracy [1]. An alternate solution for this problem is softening the
raw material before machining and restoring back its original hardness after machining.
Here, heat treatment is required in two stages. Next to it, grinding operation is performed
to finish the work-piece and to eliminate thermal deformations that are caused in the
heat treatment [2]. In view of repeated heat treatments that are followed by grinding
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operation, machining of hard metal is risky, time taking and it is a costly affair [3].
Hence, there is a necessity of direct machining of hard metals without the need of heat
treatments and grinding.

Cutting tool geometry has significant influence on machining performance [4]. Care-
ful selection of tool geometry enables machining of hard metal with minimum of cutting
force. Among the tool geometrical parameters, the most influential parameters are rake
angle, cutting angle and nose radius [5]. Tools with negative rake angle are stronger but
require larger force to penetrate into work-metal. Tool with positive rake angle easily
penetrates into the work material at the cost of its strength [6]. Hence, rake angle should
be selected to strike a balance between cutting force and mechanical strength of the tool.
Proper cutting angle gradually approaches the cutting zone to cause less impact on the
tool. Hence, cutting angle should be carefully selected [7]. Nose radius is incorporated
on the cutting tool to avoid breakage of tool tip. But larger nose radius results in cutting
tool vibration due the chatter of the tool. Appropriate nose radius reduces the stress
concentration on the tool and improves the surface finish [8].

Cutting force is a performance indicator that indicates the ease of machining. It is
understood that lesser the cutting force, easier is the machining of components [9]. In
order to select proper tool geometry, experiments are conducted using tool inserts of
variable tool geometry. Cutting forces are measured at corresponding tool geometry.
Tool geometrical parameters are available in a broad range and more number of tools are
required for experimental study. Hence, the experimental cost and time goes beyond the
reach. For this reason, mathematical modelling is adopted to choose optimum cutting
tool geometry.

Mathematical model generates an output in the form of an equation that relates tool
geometry with machining force. This equation is used for predicting the machining force
at a given combination of the tool geometrical parameters. This equation is also used as
objective function for optimization of tool geometry for minimum of machining force.
Experimental validation is carried out to verify the optimum results. The experimental
cutting force is compared with analytical cutting force and if their deviation is found to
be within the limits, then the genuineness of the results is confirmed and optimum tool
geometry is finalized [10]. This method would be followed with any other tool and work
material combinations. Any mathematical model and optimization technique would be
considered alternatively based upon the accuracy of results and fitness of the model.

Researchers and analysts prefer Artificial Neural Networks (ANN) because of the
ability of handling linear as well as non-linear data for variety of systems without implicit
assumptions as for the case of conventional mathematical modelling methods [11]. The
fitness of the mathematical model using ANN is found to be better when compared to
other techniques [12]. The most widely used technique for optimization of machining
conditions is Genetic Algorithm (GA). The accuracy of results is found to be better
when compared to other optimization techniques. The execution time and number of
iterations for GA is less [13, 14]. Hence in the present case, ANN and GA are used for
mathematical modelling and optimization respectively.
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Table 1 Tool geometrical parameters considered in the experiments

Level 1 2 3
Tool geometry

Point Angle y (degree) 60 75 90
Nose Radius R (mm) 0.4 0.8 1.2
Rake Angle o (degree) -3 —6 -9

(@)«

@ — Rake Angle

B — Relief Angle

y — Cutting Angle

R — Nose Radius

I — Effective Cutting Edge Length
t — Thickness

d — Insert Width

(a) (b)
Fig. 1. (a) Cutting tool geometry; (b) Cutting force components

2 Experimentation

Hard metal specimens of MDN 350 of size ¢ 90 X 500 mm are chosen in the current
study. The machining experiments are performed in the form of turning operation using
PCBN inserts on Kirloskar Lathe machine equipped with 3-axis digital dynamometer
at constant cutting parameters. The tool geometrical elements viz. Point angle (y), nose
radius (R) and rake angle (o), which are described in Fig. 1(a)are altered as shown in
Table 1.

The cutting forces generated during cutting process are measured using Lathe Tool
dynamometer. In the dynamometer, forces in the three directions viz. Radial direction
(Fp), tangential direction (F.) and axial direction (F,) are observed as shown in the Fig.1
(b). The resultant of the three components of forces is calculated by eq.1

FReSZ\/Fg‘l‘Fg‘FFg (1)

The variation of resultant machining force with nose radius, rake angle and cutting
angle are shown in the Figs. 2, 3 and 4 respectively.

3 Mathematical Modelling Using ANN

Artificial Neural Networks technique is implemented in Matlab R2016 software with
one input layer, one hidden layers and an output layer as shown in the Fig. 5(a). Three
neurons are allocated to the input layer as there are 3 input variables. The number of
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Fig. 2. Variation of machining force with nose radius
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Fig. 3. Variation of machining force with rake angle
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Fig. 4. Variation of machining force with point angle

neurons in the hidden layer is chosen as 6, which is twice the number of input variables.
The performance of the network is better when the number of hidden layer neurons is
twice the input layer neurons [14]. Since there is one output, the number of neurons in
the output layer is ‘1°. The values of input and output variables are normalized between
0.1 and 0.9 and imported in the Neural Network architecture. The 70% of the data is used
for training, 15% for testing and 15% for validation. The Neural Network is trained in
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NN tool of Matlab software using Levenberg- Marquardt back-propagation algorithm.
The mean square error (MSE) between actual output (experimental Fres) and desired
output (Fres predicted by the neural network) is evaluated by the software and MSE plot
is generated. The training is stopped when the values of MSE for training, testing and
validation are converged as shown in the Fig. 5(b).

Similarly, the coefficient of determination ‘R’ relating the actual and the desired
outputs is calculated for training, testing, validation and for overall data and regression
plots are generated in the software as shown in Fig. 6.

Once the results of MSE plot and regression plots are satisfied after number of iter-
ations, the values of weights connecting input, hidden and output neurons are finalized.
The equation of machining force in terms of tool geometrical parameters is expressed
by Eq. (2). Here, f1, f3, f3, f4, f5 and f¢ are transfer functions relating hidden layer with
the output layers, which are given by Eqgs. (3) to (8).

Fres = 3.0315 + 0.00215f, + 3.022f;5 + 2.812f, — 1.325f5 + 3.946f; — 4.485 (2)

1
= 3
N = A o (C(<0.03855R + 4.6501, + 2.2067a — 5.5897)) ®)
1
f= “)
1+ exp(—(—2.4662R — 2.3543y — 3.8338« + 3.1924))
Input Layer Hidden Layer ’ Best Validation Performance is 0.011699 at epoch 4
3 102 \vko _;:ss‘l
E
g 10
o 1 2 3 410 EpsDChse 7 8 9 10
() (®)

Fig. 5. (a) Architecture of ANN; (b) Mean square error plot for training, validation and testing
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Fig. 7. Comparison of analytical values of resultant cutting force with that of experimental values

1
_ 5
S5 = A e (—(0.2413R + 5.2001y — 13042 + 1.209)) ©)
fi= : ©)
4T T+ exp(—(0.033814R + 0.27746y + 4.8446a + 1.7639))
1
fs = )
1+ exp(—(—0.07284R — 3.196y — 3.4142x + 3.8709))
1
fo ®)

~ 1+ exp(—(0.00015R + 2.9372y — 4.9244a — 5.0289))

The values of resultant machining force are calculated using the mathematical model
and de-normalized to get the real values. The comparison is made between the calculated
and experimental values as explained in Fig. 7. This unveils the condition of predicted
and experimental resultant force values. In the present work, they are in good agreement
in all the experiments. Thus, the selected mathematical model is confirmed to be fit and
reliable.

4 Optimization Using Genetic Algorithm

A fitness or objective function file is created in Matlab R2016 using Egs. (2) to (8).
Another file with Genetic Algorithm code is created, wherein the constraints of the
input variables are defined and the fitness function is imported. The program is executed
and the optimum results are obtained when the best and mean fitness values are converged
as shown in the Fig. 8(a). The output of the program is seen in the command window of
Matlab R2016 as shown in the Fig. 8(b), which gives the optimum combination of tool
geometrical parameters as Nose Radius = 0.4 mm; Cutting Angle = 60°; Rake Angle
= 3° and its corresponding machining force as 172.6 N.

5 Experimental Validation

Experimental validation is conducted in order to verify the results predicted by analytical
method and ensure suitability of the approach.MDN 350 specimen is machined with
PCBN tool insert with optimum tool geometry. The resultant cutting force is evaluated
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Fig. 8. (a) Convergence of best and mean values of fitness function; (b) Optimum tool geometry
and corresponding cutting force in machining MDN 350 specimens using PCBN tool inserts

Table 2. Results of experimental validation

Optimum Tool Experimental Analytical Deviation
Geometry Resultant Cutting force Resultant Cutting force (%)
N) N)
a=3° 173.60 172.60 0.57
y = 60°
R =0.4 mm

from the measured cutting force components compared with anticipated values as shown
in Table 2. The deviation is found to be less than 1 %. As per the precision machining
standards practiced in manufacturing industry, deviations within 10 % are fairly good
[10]. Hence, this confirms the suitability and reliability of the analytical approach i.e.
mathematical modelling using ANN and optimization using GA, adopted in the current
work for tool geometry optimization.

6 Conclusion

The highlights of the current experimental investigation and outcomes of mathematical
modeling and optimization are enlisted as follows.

e Tool geometrical parameters viz. Nose radius, rake angle and point angle have sig-
nificant influence on machining of hard metals. For a variation of 0.4 mm in nose
radius, the machining force is decreased by 16%.The variation of rake angle by 3°
resulted in reduction of machining force by 75%. The machining force is minimized
by 7% for a variation of point angle by 15°.

e ANN is found to be more reliable in mathematical modelling of machining data. The
coefficient of determination is observed to be 99% and mean square error is found to
be least of the order of 1072.
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GA is observed to be very accurate in optimization of tool geometry. The experimental
and GA results are closer and their deviation is found to be within 1%.

With a randomly selected tool geometry for PCBN insert, the machining force was
observed to be in the range of 304 N -533 N. Using optimum tool geometry of rake
angle = —3°; point angle = 60° and nose radius = 0.4 mm, the machining force is
minimized to 173 N. Based upon this study, an average improvement of 58.66% is
achieved in the machining of hard metals with PCBN tool inserts.

The present work shows a significant contribution in machining of hard metals.

It facilitates direct machining of hard metals, thus eliminating the need of additional
heat treatment and grinding operation. Thereby, machining cost and time would be
substantially minimized and process rejections would be avoided.

References

11.

12.

13.

14.

J. Paulo Davim: Machining of Hard Metals, Springer (2011).

Anil Kumar Sinha: Defects and Distortion in Heat-Treated Parts. ASM Handbook, 4, 601—
619(1991).

Sandvik Tool Application Guide, 2017. www.sandik.coromant.com

Amitabha Ghosh, Asok Kumar Mallik: Manufacturing Science. Second Edition, East-West
press, New Delhi, India (2010).

Dilbag Singh, P. Venkateswara Rao: Optimization of Tool Geometry and Cutting Parameters
for Hard Turning, Materials and Manufacturing Processes, Taylor and Francis 22(1)15-21
(2007).

. HaciSaglam, SuleymanYaldiz, FarukUnsacar: The effect of tool geometry and cutting speed

on main cutting force and tool tip temperature, Materials and Design 28(1), 101-111 (2007).
Rasool Mokhtari, Homami,Ali,Reza Fadaei Tehrani, Hamed Mirzadeh, Behrooz Movahedi,
Farhad Azimifar: Optimization of Turning Process using Artificial Intelligence Technology,
International Journal of Advanced Manufacturing Technology 70, 1205-1217 (2014).
A.R.C.Sharman, J.I.Hughes, K.Ridgway: The effect of tool nose radius on surface integrity
and residual stresses when turning Inconel 718™, Journal of Materials Processing Technology
216, 123-132 (2015).

Gopal Chandra Sen, Amitabha Bhattacharyya: Principles of Metal Cutting, New Central Book
Agency, Pennsylvania State University (1969).

. R.L. Murthy: Precision Engineering in Manufacturing, New Age Publishers, New Delhi, India

(1996).

Samya Dahbi, Latifa Ezzine and Haj E.L. Moussami: Modeling of Cutting Performances
in Turning Process using Artificial Neural Networks. International Journal of Engineering
Business Management 9, 1-13 (2017).

T. Deepan, Bharathi Kannan, G. Rajesh Kannan, B. Suresh Kumar, N. Bhaskar: Application
of Artificial Neural Network Modeling for Machining Parameters Optimization in Drilling
Operation”, Proceedia: Materials Science 5, 2242-2249 (2014).

NorfadzlanYusup, Azlan Mohd Zain, Siti Zaiton Mohd Hashim: Evolutionary techniques
in optimizing machining parameters: Review and recent applications (2007-2011). Expert
Systems with Applications 39 (10), 9909-9927 (2012).

B. Sidda Reddy, J. Suresh Kumar, K. Vijaya Kumar Reddy: Optimization of surface roughness
in CNC end milling using response surface methodology and genetic algorithm. International
Journal of Engineering, Science and Technology 8 (8), 102-109 (2011).


http://www.sandik.coromant.com

1030 S. Adil et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


http://creativecommons.org/licenses/by-nc/4.0/

	Mathematical Modelling and Optimization of Tool Geometry to Machine Hard Metals Using PCBN Inserts
	1 Introduction
	2 Experimentation
	3 Mathematical Modelling Using ANN
	4 Optimization Using Genetic Algorithm
	5 Experimental Validation
	6 Conclusion
	References


