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Abstract. The distinct effects of rock joints and the initiating firing pattern on
the consequences of blasting in terms of rock fragmentation and generated ground
vibration are both substantial. The integrated consideration effect of rock joints
along with the spacing burden ratio and firing patterns, which enables access to the
most beneficial and secures blasting outcomes, has not received much research.
To adopt the optimal firing pattern to lower mean fragmentation size (MFS) and
peak particle velocity (PPV), rock joints were therefore examined and evaluated
in this research using scientific methods. In order to carry out the research stated
goal, 90 blast experiments were carried out at the various mines. When joints are
perpendicular to the free face, the results showed that MFS and PPV are greatly
reduced when shot perpendicularly (V firing pattern) with lesser spacing burden
ratio. When joints are also parallel to the free face while firing in a similar pattern,
good results are seen with higher spacing burden ratio.
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1 Introduction

Rock qualities, explosive properties, the initiation mechanism, blast geometry factors,
and so on are all examples of the various parameters that might affect the fragmentation
and other effects like ground vibration. To maximize the outcomes of blasting in terms of
the lowest environmental consequences like ground vibration and acceptable size of rock
fragmentation, the focus should be placed on controllable (Blast design parameters) and
uncontrollable parameters (Rock mass characteristics). So when planning the blasting
pattern, it is essential to take into account a variety of elements, including the front-row
burden, the burden, the spacing, the depth of a hole, the stemming column, the decking
length, and the firing pattern [1-6]. Rock mass properties like joint plane spacing and
the orientation of the joint planes are the factors those influence rock fragmentation and
ground vibration [7, 8].
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At the moment an explosive charge is set off, its components are instantly turned
into gases with extreme temperature and huge pressure. When high-pressure gases hit
the wall of the blast hole all at once, the shock wave is sent through the rock mass.
Fractures form in the rocks around the outgoing shock wave if the stress is stronger
than the rock’s dynamic compressive strength [9]. It also gets radial cracks because of
bending and pulling forces [10]. When a compressive stress wave hits an open joint or
a free face, when the tensile wave bounces off of a rock’s dynamic strength, it becomes
stronger [11, 12]. Reflections of the compressive wave make tensile and shear waves,
which can move through cracks and make them bigger [13] as shown in Fig. 1 (a, b, c &
d). This is because the discussed two types of waves have different phases. After a stress
wave spreads, high-temperature, high-pressure gases expand the original borehole, make
radial cracks longer and let them go deeper, or go through natural cracks in both. The
high-pressure gases break open and widen these cracks. Explosive gases entangled in
the rock mass nudge the rock mass forward and potentially trigger flexural rupture by
bending the face [14]. The discussed concept of rock breakage may not as same as in
disturbed rocks like joints [8, 15, 16]. Damage to rock masses is likely to result from
these weak planes such as joints and bedding planes [17].

Making ensuring that chosen blast design parameters adhere to all post-blast environ-
mental restrictions and the targeted fragmentation needed for mine and mill is a difficult
issue for blasting engineers. Together with fragmentation, ground vibration is a signifi-
cant problem that has to be addressed. By balancing explosive energy to rock strength,
appropriate blast hole size and geospatial location, and other blast design factors, great
increases in blast performance can be achieved. Unfortunately, Geo—blast parameters
includes burden spacing ratio, firing pattern and joint angle have an enigmatic effect
on both fragmentation and ground vibration. It indicates that a minor change in one
parameter causes divergent effects in rock fragmentation and generated ground vibra-
tion at the same time; for instance, when fragmentation improves, the small adjustment
dramatically increases peak particle velocity [18].

The most prevalent and most crucial from geotechnical perspective discontinuities
in rocks are joints. Joints are fractures of natural deposits across whereby there has little
or no evident relative displacement [19, 20]. The greater number of joints in a rock
mass has an effect not only on the rock’s mechanical qualities but also on its dynamic
responsiveness [21] shown in Fig. 2. When a stress wave comes into contact with a rock
mass that has any kind of discontinuity, it instantly loses energy and begins to attenuate.
For this reason, it is of the utmost significance to do a study into the connection between
the number of rock joints and their quality [22]. The existence of jointing in a rock
formation has a significant influence both on the rock’s MFS and the blast’s overall
safety [23]. Similarly, rock joints have a prominent influence on the transmission of
shockwaves following blasting [1].

The incidence angle about the joint face influences the rate of attenuation of stress
waves in joints [24, 25]. Attenuation of stress waves will be caused in a different direction
depending on the angle from which the rock joint is seen. In most cases, normal angle
90° is responsible for the very rapid attenuation of stress waves [26]. As the incidence
angle increases, the transference coefficient consistently decreases, but the backscat-
ter coefficient steadily increases up to the incident angle and continues to climb as it
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Fig. 1 (a) Shock wave propagation (b) Gas pressure expansion (c) Reflection of tensile waves and
spalling & (d) Final fractured zone

moves closer and closer to the critical angle of 90° [27]. The wave transference and
backscattering both affected the incidence angle as a result. In such conditions firing
perpendicular to joint facilitate proper explosive consumption and better casting [7], as
shown in Figs. 5 and 6. In addition to affecting fragmentation; the joint angle can also
affect ground vibration. A change in joint angle has a substantial enough impact on the
blast vibration to be regarded as important since it may result in a change in the atten-
uation rate of vibration velocity (Rinehart et al., 1958). The touching angle, waveform
pattern, and structural characteristics of the rock joint will determine how a blast stress
wave interacts with it, and these elements may cause the blast energy to be dispersed
[26, 28].

It is obvious that the mean fragment size of the blasted rock decrease as the spacing
to burden ratio rises. This might be as a result of the explosive’s firing, which results in an
increase in spacing and a decrease in burden value [29]. The thin ledges of rock mass that



Fig. 2 Understanding the effect of joints on rock breakage at opencast coal mines at ramagundam
III, SCCL.

resulted in the reduced fragmentation were produced by increased spacing and decreased
burden. The spacing to burden ratio typically ranges from 1 to 2, but the ideal values
were 1.15 for staggered patterns and 1.25 for rectangular patterns [30]. The optimum
value of spacing to burden ratio in most of the blasts ranges 1.1 to 1.3 and it results
into good fragmentation [31]. In accordance, the spacing burden ratio had a significant
influence on induced ground vibration [32]. Excessive spacing burden might trigger
scope to propagate unnecessary peak particle velocity [33]. Detonation waves need a
route to follow to get to the explosives stored in the holes; this is what a firing pattern
does. The most important aspect of any blasting program is the successive formation of
the free face. As a result, the firing pattern determines rock movement and direction by
allowing the following blast holes/rows to be positioned on a free face [30, 34]. Other
aspects like ground vibration, the proper application of the pattern can help achieve the
best results possible. A concept to consider firing burden and spacing-to-burden ratio
for deciding firing pattern produces significant results [35].

Important factors affecting the mean fragmentation size include, in addition to joint
spacing, the influence of joint angle [36]. Poor rock fragmentation occurred when the
wave front path at an angle to the joint plane. On the other hand, when the blast was
pointed in a path that was parallel to the plane of weakness, excellent rock fragmentation
was created. In many situations, better fragmentation was found to occur when the free
face was oriented so that it was parallel to the joint planes shown in figure 2.22 [37].
In addition to affecting fragmentation, the joint angle can also affect ground vibration.
A change in joint angle has a substantial enough impact on the blast vibration to be
regarded as important since it may result in a change in the attenuation rate of vibration
velocity. The touching angle, waveform pattern, and structural characteristics of the rock
joint will determine how a blast stress wave interacts with it, and these elements may
cause the blast energy to be dispersed [38].
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Attenuation of stress waves will be caused in a different direction depending on the
angle from which the rock joint is seen. In most cases, normal angle 90V is responsible
for the very rapid attenuation of stress waves [26]. As the incidence angle increases, the
transference coefficient consistently decreases, but the backscatter coefficient steadily
increases up to the incident angle and continues to climb as it moves closer and closer
to the critical angle of 90° [27]. The wave transference and backscattering both affected
the incidence angle as a result. In such conditions firing perpendicular to joint facilitate
proper explosive consumption and better casting, shown in Fig. 6.

Data collecting using UAV technologies has produced more accurate outcomes in
numerous scientific domains [39]. UAV technology has recently been adopted into the
mining industry to perform volume calculations, terrain monitoring, and surveying. Geo-
logical formations were quantified and described using photogrammetric data [40]. A
study demonstrated the use of photogrammetric methods to map the locations of geo-
logical joints. Using UAV technology, it is possible to gather topographic data with
millimeter- to centimeter-level resolution over areas measuring many square kilometers
[41]. UAV technology is inexpensive and user-friendly. In structural analysis, a 3D point
cloud is used to extract 3D structural data in order to understand the strike and dip of
fractures [42, 43]. Employed UAV datasets and cutting-edge software to locate joints,
faults, and fractures in dip and strike orientations. A novel least-cost-path method was
also developed by [44] to map geological structures like joints using UAV informa-
tion. Moreover, fragmentation can be mapped more precisely than with conventional
techniques [40]. Analogously, computational technologies also play an effective role
in the measurement and prediction of joints nowadays [45]. Face mapping technology
combination of drone photography and Al software assessment can result in optimal
fragmentation with permitted PPV [46]. Unmanned Aerial Vehicles (UAVs) or drones
are useful in locating joint planes and other geological discontinuities that may aid in
blast design [38].

2 Materials and Methods

2.1 Field Data Collection

Experiments were carried out at the opencast mine II, Ramagundam, owned by Singareni
Collieries Company Limited and the kesoram limestone mines. The mine is located at
latitudes 180 39” 07" N and 180 41° 05" N, and longitudes 790 32’ 37" E and 790 33’
53" E. The mining zone is surrounded by a rather thick layer of soil, alluvium, and sandy
soil, as well as various different types of rocks that are part of the Barakar Formation
and belong to the Lower Gondwana group. Blast hole section and firing pattern used in
the experimentations were shown in Fig. 3 (a & b).

2.2 Data Analysis

Artificial intelligence (Al) software recognized joint planes, dip angles, and intervals to
examine the target bench’s joint intensity and joint pattern as shown in Fig. 4 (a, b &
¢). The primary algorithm of the software was designed primarily to look through the
collected data for specific qualities associated with rock joints.
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Fig. 3. (a) Blast Hole Section (b) Staggered Drilling with V Firing Pattern at Mine A

The model bench depicted in Fig. 4 was photographed at one of the experimental
sites at the KESORAM limestone mine in Basantnagar, Telangana. The model was built
with the help of approximately 25 images taken at the area where the data was obtained.

2.3 Blast Experimentation

To accomplish the primary goal of this study, blasts have been carried out using
the blasts that were developed in Al-based software. There were a total of 90
blasts carried out on 05 benches consisting of sedimentary rocks such as coal
(Overburden) and limestone; several different combinations of blasts were carried
out so that the individual trends and their effects on rock fragmentation and ground
vibration could be seen simultaneously.

Phase I: All blast design parameters are maintained the same, but the firing pattern
is altered with the respect to joint angle.

Phase II: All blast design parameters are maintained the same, but the Spacing
Burden Ratio is altered with the respect to joint angle.

Phase V: All blast design parameters are maintained the same, but the firing pattern
and spacing burden ratio together are altered concerning the joint angle.

In the beginning, each of the experiment benches was cleaned to a depth of 0.3
meters to improve the joint visibility on the bench for identification and reference
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Fig. 4 (a) Original bench image captured by drone used for model creation (b) 3D model created
in Al software (c) Joint detected in software of the limestone bench at Kesoram Limestone Mines,
Basant Nagar, Telanagana

marking. This method is particularly useful in mines that have been worked under-
ground in the past when there is a greater potential for the formation of fractures
and the disruption of the strata. An L&T 9020 Dozer was used to clear the area
and level the ground. The same procedure was carried out at each of the mine’s
experiment benches. To maintain accuracy throughout the experiment, the mark-
ing of joints on the bench was performed on every respective bench, and proper
scales and measurement kinds were used. To avoid perturbation caused by wind
turbulence and other climatic issues, two-step marking with white powder was
used.

After the joint planes had been effectively identified, the burden and spacing had
to be accurately estimated to avoid overlapping drilling in the joint planes dipping.
This may cause the drilling bits to bind while they are operating in the joints, thus
avoiding this overlap was essential. The crew members working the following
shift at the drilling operation were given precise instructions on how to maintain
the drilling precision for the succeeding blasts. Recorded blasts data presented in
Table 1 (Figs. 5 and 6)

3 Results and Discussions

Phase I:
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Fig. 5 Line firing for parallel joints with higher spacing at opencast coal mines at ramagundam
III, SCCL.

Fig. 6 Diagonal firing for vertical joints with lesser spacing at opencast coal mines at ramagundam
III, SCCL.

Effect of Firing Pattern on Mean Fragmentation Size and Peak Particle Velocity

In Phase I, three firing patterns were performed to determine the influence of firing
pattern on simultaneous blast results such as mean fragmentation size and peak particle
velocity. Rectangular drilling with a line firing pattern was chosen to fire blasts paral-
lel when joints are parallel to the free face to permit appropriate in-flight collision, as
indicated in picture 8.1. Similarly, Diagonal and V firing patterns were chosen to ease
shooting perpendicular to the free face to achieve improved breakage and rock displace-
ment, as indicated in picture 8.2. A total of 90 blasts were conducted to explore the
influence of firing patterns on blasting outcomes.

Each firing pattern was selected based on the direction of joint presence on the
bench surface and face. As shown in Figs. 7 and 8, for each blast in Phase I, joints have
been highlighted in accordance with the joints found in Al-based software. In all three
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Fig. 7 V Firing with respect to joints perpendicular to free face

Fig. 8 Line Firing with respect to joints parallel to free face

investigation mines, the number of surface joints varied from bench to bench (Figs. 9
and 10).

From Fig. 11 (a&b), it is observed that in all three firing patterns, V produced good
fragmentation sizes hovering between 0.41 to 0.56m, perpendicular firing initiation with
the V pattern reduced hole burdens and increased spacing at the time of hole initiation
and in-flight collision of broken rock during its movement, lowest MFS 0.41mm can be
seen in Fig. 10(b). In other circumstances, the existence of several joint clusters inclined
away from the vertical face causes gravity force to induce rock displacement when gas
energy enters through joints. In the case of PPV, safe PPV was produced between 0.95 to
3.1mm/s in different monitoring distances with a V firing pattern due to the cancellation
of the wave patterns generated by simultaneous holes on both the arms of the V as
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Fig. 9 Photograph of fragmentation with Line firing pattern & V firing pattern
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compared to diagonal or line firing patterns, except few blasts PPV little higher due to
presence of only one joint set causing no attenuation rather rock absorption. Lowest PPV
recorded was 0.95mm/s as shown in Fig. 10(a).

Phase II:
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Effect of Spacing Burden Ratio on Mean Fragmentation Size and Peak Particle
Velocity:

In Phase II, three S/B ratios were used to provide for a larger spacing burden ratio
where joints are parallel to the free face as shown in Fig. 12, and a lower spacing
burden ratio in which joints are perpendicular to the free face as shown in Fig. 13.
Three S/B ratios 1.2, 1.25 & 1.3 were investigated to see how the spacing burden
ratio affected simultaneous blast results like mean fragmentation size and peak particle
velocity (Fig. 14).

From Fig. 16, it is observed that dominant joints parallel the face, a larger spacing
burden ratio of 1.3 resulted in excellent fragmentation of 0.4 m shown in Fig. 15b
by preventing early joint integration and superficial crater fracturing and the maximum
MEFS obtained was 720 mm shown in figure 9.8b. Similarly, PPV is also produced at 1.23
shown in figure 15a due to impedance mismatch in transmission wave caused reflection
instead of following propagation path due to the number of joints presence in bench,
the increment in PPV in the same trend is however due to change in various monitoring
distances.

In the case of vertical joints that are perpendicular to the excavation face, a lower
spacing burden ratio of 1.2 resulted in good mean fragmentation sizes ranging from
0.4 to 0.6, except for two blast results that may be due to seismic wave reflection and
refraction caused by crossing with many inclined joints and the maximum MFS produced
was 800 mm which shown in figure 9.8a.

A lower S/B ratio aided early rock breakup by retaining seismic energy before it
escaped from the peripheral joints. Analogously, PPV is slightly higher than 1.3 S/B
ratio adoptions, which could be attributed to the confinement of shock - gas energies
with a 1.2 S/B ratio to break and displace rock rather than attenuation and wastage of
explosive energy facilitated as a scaffold to pass seismic wave and accelerated marginally
greater PPV.

Phase III:

Fig. 12 Less spacing Burden when joints parallel to free face
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Fig. 14 Photograph of fragmentation with S/B ratio 1.2 & S/B ratio 1.3
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Effect of Spacing burden ratio and Firing Pattern on Mean Fragmentation Size
and Peak Particle Velocity:
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In Phase V, the combination of spacing burden ratio and firing pattern was examined
simultaneously since it is vital to design blast in conjunction with the rock’s geology
and structural parameters. The spacing burden ratios of 1.2 and 1.35, as well as the
firing patterns line and V, were repeated since they yielded superior blasting outcomes
in prior phases. Stemming length of 0.9 times burden (4.5m) and decking length of
4m were pulled from earlier phases and maintained constant since they produced better
outcomes. Preferences for S/B ratio and firing pattern were comparable to Phase I and
II concerning joint presence on the bench surface and free face.

The link between MFS and the combined impact of S/B and the firing pattern is
depicted in Fig. 19 (a&b). The position of the joints was indicated on the bench surfaces,
and the placement of holes was done with the S/B ratio in mind, and holes were not placed
too near to joints. According to the findings, MFS decreases with decreasing S/B ratio of
1.2, most likely due to successful utilization of explosive energy due to collision of the
wave pattern established in the contiguous holes, which aids in better rock fragmentation.
Line firing with 1.2 S/B provided MFS 0.598 m as shown in Fig. 18b, which might be
attributed to perpendicular firing concerning vertical joint (approximately 90°), which
aided in-flight collision of rock shattered during its movement and resulted in a lower
S/B ratio. As in Phase II presented, 1.2 S/B helped early rock breakage by holding
seismic energy before it flowed from the peripheral joints. Maximum MFS observed
with a 1.2 S/B ratio is 840mm and a 1.35 S/B ratio is 1.28 m as shown in Fig. 18 (a&b).
Similarly, the PPV trend was equal with both 1.2 and 1.35 ratios and Line and V Firing
patterns, implying that the lower S/B ratio accelerated less attenuation and PPV produced
approximately 0.93 mm/s as shown in Fig. 17.

Phase IV:

Effect of Joint Angle on Mean Fragmentation Size and Peak Particle Velocity:

The major joint pattern makes an angle ranging from 0 degrees when coinciding
with the blast face and 90 degrees when perpendicular to the bench face.
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When studied the blast trials showed less MFS when the Joints are oriented in between
70-90° as shown in Fig. 20. The blast energy is better utilized when there is complete
collision of the propagating and reflecting shock waves and so maximum result and less
MES occurs.

The angle between the line of shot holes and the joints influences the effectiveness
of the blast which is indicated by the relative measure of the PPV. During the blast trials,
it was observed that when the angle progressively increased there is a corresponding
decrease in the PPV indicating the most effective blasts at angles 90 shown in Fig. 21.
This may be due to the reason that the incident and the reflective blast wave meat squarely
when the angle between them is 90 degrees. This corroborates observations of various
previous authors. In all trials of Phase VII in a combination of change decking length
and V firing along with the considerations of joint angle and rock compressive strength
showed significant results of MFS below 0.3 m with and PPV produced lower than
0.7mm/s with decking length 4m and V firing pattern.
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Conclusion

From the study, it was found that mean fragment sizes (MFS) and peak particle
velocity (PPV) are affected by geotechnical characteristics such as joint angle, joint
number, joint spanning height, and rock compressive strength.

An Unmanned Aerial Vehicle (UAV) is a good tool to capture images. These images
were used to identify rocks, plan blasts, determine the size of benches, and gauge the
volume of muck.

In the present study state-of-art Al-based software, was well assisted in evaluating
rock mass characteristics such as joint dip-strike directions and joint dip angle which
greatly helped in creating many blasts.

Al-based design software was used to help in blast design and offer early warnings
for iterations.

It was found that the V initiation pattern produced better fragmentation ranging
between 0.49 to 0.56, as opposed to a line or diagonal.

In terms of PPV, it was observed that V firing pattern yield safe values between 0.49
to 2.89 mm/s at various distances.

In the case of the S/B ratio, 1.3 created fragmentations between 0.34 to 0.72 m, which
enabled, shovel loading easier and fast.

e It was found that 1.3 S/B ratios produced PPV between 1.23 to 3.89 mm/s.
e It was revealed that the combination of S/B ratio 1.2 and V firing pattern produced

good mean fragmentation size values ranging from of 0.59 to 0.84.
In the case of PPV, it was found the combination of S/B ratio 1.2 and the V firing
pattern brought PPV values between 1.34 mm/sec to 3.61 mm/sec.
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