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Abstract. Meta-heuristic approaches, particularly population-basedmethods, are
used to solve NP-Hard problems in the search for near-optimal solutions. In highly
combinatorial problems, due to the presence of numerous cons- traints, these
population-based methods are expensive in terms of generating feasible solutions
for the population across iterations. Several times, it is nearly impossible to get
feasible solutions across populations. Therefore, there is a need to reduce the infea-
sibility and refine the search space for these approaches. In general, meta-heuristic
search capability needs to be increased when search space becomes discrete and
is tight by constraints. In this paper, work has been done in that direction where
search space is sampled from the feasible space prior to the application of Particle
Swarm Optimization (PSO) such that it smartly moves in the feasible region and
tries to find the optimal solution. The process starts with sampling using constraint
programming with linear constraints and then applying a population-based meta-
heuristic with a non-linear complex objective/fitness function including, penaliz-
ing infeasible solutions. The presented results are a testimony that our method is
successful in reducing the infeasible region over the number of iterations.

Keywords: Optimization · Meta-heuristic · Particle swarm optimization ·
Genetic Algorithm · Constraint Programming (CP) · feasibility

1 Introduction

Optimization is amethod to solve a problem to anoptimal solution given someconstraints
and optimizing function. Optimization techniques are evolving and a lot of research is on
the way to devise new algorithms and improve existing al- gorithms. Exact algorithms
which always give the optimal solution have a short- coming in that they are expensive
with respect to time complexity. Therefore, meta-heuristic techniques are devised which
may or may not give the optimal solution but will at least give a good solution within
a reasonable amount of time. There is a need for these techniques need to be improved
by working in a direction to overcome their shortcomings. In this paper, work has been
done to improve meta-heuristic population-based techniques by introducing feasible
solutions using constraint programming to help algorithms search faster for solu- tions.
To demonstrate our findings, the popular Vehicle Routing Problem (VRP) instance has
been used with multiple vehicles having to travel to multiple nodes and return to the
same origin node.
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2 Problem Description

Meta-heuristic approaches are used to solve NP-Hard Problems and the need is to solve
them in a realistic and reasonable time. However, when the problem space is large with
numerous constraints, the population-based approaches take a significant amount of
time to even search for a feasible solution. To be specific, in population-based methods,
while building (generating) the population (and future generations/iterations), due to the
complexity of the search space, the samples are mostly infeasible (even up to 100%)
in most of the problems. This leads to an astronomical increase in search time which
affects the practical use of the solution. So, there is a need to get reduce infeasibility and
refine the search space for population-based meta-heuristic approaches.

3 Literature Review

Research has been done to understand different population-based meta-heuristic meth-
ods, penalty functions, constraint satisfaction algorithms and different ap- proaches to
constraint handling in heuristic methods.

Reference [1] Optimization problems with the help of genetic algorithms (GAs) and
penalty functions were used for getting solutions in the feasible search space. Popu-
lar penalty functions with tuning parameters help to get better re- sults. Comparisons
between feasible and infeasible solutions are made to find solutions in the feasible
regions. Once sufficient feasible solutions are found, a good algorithm like GA with
crossover and mutation approaches helps to get better solutions. Interestingly, diversity
in the solutions was also maintained so that the searching capability is not restricted to
a fixed zone of the feasible region.

Reference [2] Constraint handling is one of the major concerns when ap- plying
genetic algorithms (GA) to solve optimization problems that are highly constrained.
This paper proposes to use the gradient information derived from the set of constraints
to correct infeasible solutions.

Reference [3] The Stochastic Ranking approach was proposed by Runars- son and
Yao, and it uses a multi-membered evolution strategy. It was done by balancing objective
functions and penalty functions. The approach requires a user-defined parameter called
“probability function”, which determines the bal-ance between the objective function
and the penalty function.

Reference [4] Another paper presents a particle swarm optimizer for solving con-
strained optimization problems adopting a small population size. The selec- tion of
particles is based on the distance of a solution from the feasible region.

Interestingly, a no-penalty function and initialization of the population were used in
the framework.

Reference [5] This work researches in that directionwhere search space is sampled in
the feasible region and after that population-based Particle Swarm Optimization (meta-
heuristic techniques) is applied so that it smartly moves in the feasible region and tries
to find the optimal solution. Reference [6] The first step involves sampling using con-
straint programming with linear constraints and then applying population-based meta-
heuristic with a non-linear complex objective/fitness function including penalization of
the infeasible solution.
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In the draft contents, solution architecture and framework are proposed, fol- lowed
by the description of the use case (scenario). Then follows the experiment setting and the
results. We have set up our experiments for the Particle swarm optimization Framework
and injected feasible solutions using Constraint Pro- gramming. Development of Gen-
eralized architecture for different population- based meta-heuristics is also proposed in
our work. The paper ends with the conclusion along with potential possible future work.

4 The Particle Swarm Optimization (PSO) Algorithm

Reference [7], In the optimization problem, particularly in population-basedmetaheuris-
tics like GA or PSO, a variable is defined by a vector,

X = [X1,X2,X3, . . .Xn] (1)

that minimizes or maximizes a cost function f(X). It is an n-dimensional vector,
where n represents the number of variables to be determined in a problem. For example,
it can be considered as coordinates in the problem of being selected by a flock of birds
based on their current position, individual movement, and the whole group’s movement.
The objective function’s use is to get an idea about how good or bad a position X is. The
following parameters are assumed:

f: objective function,
Xi: position of the particle or agent,Vi: velocity of the particle or agent,A: population

of agents,
W : inertia weight,
C1: cognitive constant,
C2: social constant,
U1, U2: random numbers,
Pb: personal best,
gb: global best.
The actual algorithm works as follows:
1. Create a ‘population’ of agents (particles) that are uniformly distributed over X.
2. Evaluate each particle’s position considering the objective function z.
3. If a particle’s current position is improved from its previous best position, update

it.
4. Find the best particle (which is at the best position based on the objective function).
5. Reference [8], Update particles’ velocities.

V t+1
i = W .V t

i + c1U
t
1 ∗ (Pt

bi − Pt
i ) + c2U

t
2
(gtb − Pt

i ) (2)

6. Particles get moved to a different location.

Pt+1
i = Pt

i + vt+1
i (3)

7. Go to step 2 until the stopping criteria are satisfied.
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Fig. 1. Analysis of the Particle Swarm Optimization Algorithm

5 Analysis of PSO

Reference [7], As shown in Fig. 1, the significance of velocity updating equation
parameters is as follows:

W: It is an inertial factor for velocity update. The particle’s motion is de- pendent on
the previous particle’s motion, so the particle tends to move in the same direction.

C1: The parameter C1 existing as a product is a positive constant, and it is an individual-
cognition parameter. It is the factor that is based on the particle’s own previous
experiences.

C2: It is a social learning parameter, and it takes care of the global learning of the swarm.

Fig. 2. Flowchart for PSO + CP
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6 The Artwork

6.1 Architecture & Framework

Figure 2 presents a macroscopic view of the modified PSO algorithm which includes
the CP correct step.

The following steps summarize the architecture:

1. Initialize the population of particles. Thiswould be generated randomly. In scenarios,
where a prior model provides a feasible solution, the same can be used as part of
the initial population.

2. Check the feasibility of samples in the population using the constraints in- volved.
3. Certain parts of infeasible solutions are corrected using Constraint Program- ming

(CP). This is the novelty we have presented in this work. In Fig. 2, this is shown as
the orange boxes.

4. Evaluate the population using the evaluation (objective) function on each and every
sample by penalizing the infeasible solution. The type of penalizing function has
the potential for future work.

5. Store personal best and global best parameters based on the result of the evaluation.
6. Update the population using the PSO equation. In this step, we update the population

based on the learnings from the previous iterations.
7. Again, check the feasibility of samples in the population using the constraints

involved.
8. Again, certain parts of the infeasible solutions are corrected using Constraint Pro-

gramming (CP). This is the novelty we have presented in this work. In Fig. 2, this
is shown as the orange boxes.

9. In this step, the velocity is corrected from the corrected sample.
10. Repeat steps from the evaluation function (Step 4).
11. Stop evaluating based on the stopping criteria. In our case, when the time limit or

the number of maximum generations, whichever is earlier.

6.2 Problem Scenario

The following scenario has been simulated to test our invention.M vehicles need to serve
the demand in N cities by moving products from one depot. The coordinates (lat-long)
of the depot and the cities are known.

1. Given N = 102 cities, M = 10 Vehicles and 1 Depot.
2. Latitude and longitude of different cities are known.
3. M Vehicles have to serve N cities such that a city is served once by the vehicles. The

objective is to minimize the total distance traveled by the vehicles.

6.3 Formulation

1. Number of cities, N = 102.
2. Number of depots = 1.
3. Number of vehicles, M = 10.
4. Number of variables = N*M = 1020.
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Fig. 3. Particle visualization

5. Number of constraints = N = 102.
6. Size of particle = Number of variables.
7. Particle Definition P: a particle is a vector of binary elements as denoted in Fig. 3.

Each element denotes whether mth vehicle visits nth city or not.

X[city] = { 1 if city is visited by mth vehicle
0 if city is not visiited by mth vehicle

(4)

8. Particle length L is the number of cities times the number of vehicles which is the
length of variables.

L = N ∗ M (5)

9. Constraint: A city is visited by one vehicle only
∑

m

P[city] = 1 · · · ∀cities (6)

10. The objective is to minimize the total distance D traveled by all vehicles and the
penalty which is the number of rejected samples in the population for any constraint
violation P in each iteration of the particle swarm optimization algorithm. Note M
is a large number to penalize.

Objective = Minimize (D + P ∗ M ) (7)

7 Experiment and Results

Different cases have been experimented with using the DEAP library in Python by
applying PSO and CP SAT solver for constraint programming in Python is used for
solving the problem.

In the experimentation Table 1, we can observe that rejected samples are getting
reduced significantly - more than 40% for this problem instance with different % of
sample correction. This can be compared to the case without any sample corrections,
where it leads to no reduction in infeasibility.

It is found that using extraction of feasible solutions at every iteration helps in getting
a reduced number of infeasible solutions in the next iterations. In PSO without sample
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Table 1. Experiment and Result.

S.No. Cases % of fea-
sible ini- tial
popu-
lation

%of
feasible updated
population

% Reduc-
tion In In-
Feasibility

Fitness

1 Without sample
correc-
tion

NA NA NA 1.00009
e + 12

2 With 20% Sample
cor-
rection using CP

0 20 60 275386
45.899

3 With 50% Sample
cor-
rection using CP

0 20 41.15 27758178.
09

4 With 100%
Sample cor-
rection using CP

0 100 45.8 2709898
5.59

correction case, there is no reduction in infeasible solutions as also shown in Fig. 4.
This case has no feasible solutions injected into the PSO. So, every time only infeasible
solutions are generated and hence a horizontal straight line is obtained as shown in Fig. 4.

The same parameters are considered for PSO i.e. w (inertial parameter) = 0.7, c1
(cognitive parameter)= 0.4, c2 (social parameter)= 0.4, population size= 2000, as well
as the time limit (600 sec) for running the algorithm for all cases. Percentage passing
for sample correction is not applicable for VRP using PSO without sample correction
as tabulated in Table 1.

In Figs. 5 and 7, it shows how the infeasibility is reducing over the itera- tions for
100% sample correction and 20% sample correction respectively. Also, in Figs. 6 and
8, there is an improvement in the fitness value over the number of iterations for 100%
sample correction and 20% sample correction respectively.

8 Summary

The methods can be generalized to any population-based heuristics as shown in Fig. 9.
Most of the flow will remain the same and the constraint correction activity can be
replicated.

References [9] and [10], it is evident from the Fig. 9 that the customiza- tion happens
in the updation block. In PSO (our case) it is the velocity, in Ant Colony Optimization
(ACO) it is Pheromone updation and in Genetic Algo- rithms (GA) it is chromosome
updation (crossover/mutation).
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Fig. 4. PSO without sample correction: Sample rejected over iterations

Fig. 5. PSO with 100% sample correction: Sample rejected over iterations

Fig. 6. PSO with 100% sample correction: Fitness value over iterations
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Fig. 7. PSO with 20% sample correction: Sample rejected over iterations

Fig. 8. PSO with 20% sample correction: Fitness value over iterations

9 Conclusion

In this work, we have shown a CP-based sample collection methodology to reduce the
in-feasibility during the sample generation (population) process in PSO.

This Fig. 9. Flowchart For generalized population-based methods method, with
minimal customization, is replicable across other population-based heuristic methods.

1. Reduction in the infeasible samples proves that a feasible set of solutions sampling
using CP along with penalizing function drives the PSO algorithm to search for a
solution in a feasible region.

2. Also, decrease in rejected samples over the generations/iterations shows that it helps
PSO by its swarm intelligence to learn to find solutions in the feasible regions.

3. In practical applications, this method helps in the enhancement of search speed,
leading to a computationally favorable solution for complex problems.

10 Future Work

The future work will involve the following two dimensions,
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Fig. 9. PSO with 20% sample correction: Fitness value over iterations

4. Reference [11], Implement the CP-based method in other population-based meta-
heuristic methods such as GA, ACO, Bee Colony Optimization (BCO) etc. Follow
the same approach as presented in Fig. 9

5. Explore other penalty functions and the implementation to increase the speed of
infeasibility correction, leading to faster/quicker search and better optimal solutions.

6. The current solution accounts for linear constraints only. Therefore, there is a need
to work on getting feasible solutions for non-linear constraints as well. Implemen-
tation of the current methodology with sophisticated hard- ware may result in better
solutions.
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