EPIGENETIC REGULATIONS, MOTIF AND PATHWAY IDENTIFICATION OF MYELOFIBROSIS CHIP SEQUENCES

Sravani Sane ${ }^{1 *}$, Shylesh Murthy IA 2 and Preenon Bagchi ${ }^{3}$
${ }^{1 *}$ Padmashree Institute of Management and Sciences, Bengaluru, India. Corresponding author: Email: sanesravani836@gmail.com
${ }^{2}$ Junior Researcher, Vasishth Academy of Advanced Studies and Research, Bengaluru, India.
${ }^{3}$ Institute of Biosciences and Technology, MGM University, India.

Abstract

Next generation sequence technique that is Chromatin immunoprecipitation (ChIP) on the ChIP-Seq of Myelofibrosis. Myelofibrosis is a type of blood cancer which is also considered as a form of chronic leukemia. It is two types primary myelofibrosis and secondary myelofibrosis its leads to complication of an autoimmune disease, additional disease features include hepatosplenomegaly, extramedullary hematopoiesis (EMH) etc., In this work, I have retrieved its chip-Seq from SRA database, removed the PCR duplicates and finally identified the genome enriched region using the MAC2 call peak tool This annotated peak table was used to identify the motifs present in the chip-Seq of Myelofibrosis. Peak table was annotated to identify the genes and the corresponding pathways was identified from the KEGG pathway.

Keywords: Chromatin immunoprecipitation (ChIP), Myelofibrosis, Next Generation sequencing, PCR duplicates, MACS2 Callpeak, Motif, KEGG pathway.

1 INTRODUCTION

ChIP sequencing (ChIP-Seq) is a powerful method for identifying genome-wide DNA binding sites for transcription factors and other proteins. "Next generation" genome sequences technology can provide one - two orders of magnitude increase in the amount of sequence that will be cost effective and new technology ChIP - Seq directly provide whole genome of mammalian Protein - DNA interactions [1, 2]. It starts with crosslinking of DNA-protein complexes and then fragmented, they are treated with an exonuclease to cut unbound oligonucleotides. Protein-specific antibodies are used to immunoprecipitation the DNA-protein complex. DNA is extracted and sequenced, giving high-resolution sequences of the protein-binding sites. ChIP Seq has many advantages such as, it captures DNA targets for transcription factors or histone modifications across the entire genome of any organism and also it defines transcription factor binding sites [3]. ChIP-Seq could be the way for genome-wide profiling of DNA-binding proteins, or nucleosomes and attributable to the tremendous progress in next-generation sequencing technology [4].

Myelofibrosis is a type of blood cancer which is also considered as a form of chronic leukemia [5, 6]. In this disease, the bone marrow is replaced by fibrous scar tissue. It is two types primary myelofibrosis (occurs on its own) and secondary myelofibrosis (oc-
curs as the result of separate disease) its leads to complication of an autoimmune disease. The bone marrow develops three types of cells white blood cells, red blood cells and platelets [7]. When mutation occurs in a single cell of DNA, it passes on to new cells and leading to defective of cell divides. Characteristic of myelofibrosis like megakaryocytes (over production of giant cells) [8], decreases production of red blood cells - may occur anemia and thrombocytopenia (deficiency of platelet production). Overall world in about 12% cases, primary myelofibrosis will progress to acute myeloid leukemia fastly growing of blood cancer $[9,10]$.

2. MATERIALS AND METHODS

The primary aim of the current research is to provide a detailed overview of epigenetic regulations of Myelofibrosis and throw a light on the pathways involved [11] Galaxy tutorial by Lauren Mills, Analyzing ChIP-Seq Data in Galaxy is used to analyze Mus musculus Myelofibrosis fastq sequences having SRA accession number DRR311742 and DRR311743 were retrived from SRA database. We mapped the reads using Bowtie2 [12]. Using Collect Alignment Summary Metrics tool we take the summary of our alignment. Next using RmDup we remove PCR duplicates [13] and Collect Alignment Summary Metrics tool was re-run. Finally, using MACS2 Callpeak we identify peaks from alignment results [14, 15]. Using Peak calling we identify areas in our genome that have been enriched with our aligned reads, these areas are those where protein interacts with DNA

Next, we annotate our peaks table to take top 100 most significant peaks and identify the genes overlapping with these peaks and Genes were selected model using Swiss prot with Ramachandran plot $[16,17,18]$ was done. We identify the motifs using SeqPos motif analysis tool. Biological sequence motifs are short conserved sequence pattern associated with distinct functions that usually represents important structural or functional features [19]. Finally, the pathways of these genes were identified from KEGG pathways $[20,21]$.

3. RESULTS AND DISCUSSION

3.1 FASTQC quality reports

FASTQC quality reports was given quality control to Mus musculus chip-sequences with SRA accession number DRR311742 and DRR311743. FASTQC results were given in fig. 2 DRR311742 and fig. 3 DRR311743.

3.2 Bowtie2

Mus musculus chip-sequences with SRA accession number DRR311742 and DRR311743 were mapped using Mus musculus ref Seq using Bowtie2.

Mapping output of DRR311742:

Mapping output of DRR311743:

3.3 Collect alignment before:

We use the tool Collect Alignment Summary Metrics tool take the summary of our mapping done above. Table 1 contains the alignment summary for DRR311742and Table 2 for DRR311743.

Table: 1 Alignment summary for DRR311742

Table: 2 Alignment summary for DRR311743

Next, we removed the PCR duplicates using RmDup. Table $3 \& 4$ contains the Alignment summary for DRR311742 and DRR311743 and removing PCR duplicates.

Table: 3 Alignment summary for DRR311742 post RmDup

Table: 4 Alignment summary for DRR311743 post RmDup

3.4 MACS2 Callpeak:

As per the alignment summary (Table 3, 4), we see that the reads are less post RmDup which implies that the duplicate reads are removed. Next, we use MAC2 call peak tool to identify areas in the genome that are enriched with the aligned reads. Model-based Analysis of ChIP-Seq (MACS) is a commonly used tool for identifying transcription factor binding sites. The algorithm confines the influence of genome complexity to evaluate the significance of enriched ChIP regions. This tool improves the spatial resolution of binding sites by combining the information of both sequencing tag position and orientation. Here, MACS is used along with a control sample (DRR311742) which increases specificity of the peak calls (Fig. iii). MACS2 models the distance between the paired forward and reverse strand peaks and uses 1000 enriched regions to model the distance between the forward and reverse strand peaks.

(Fig. 4) peak model in graphical format

(Fig. 5) Correlation metric of Peak

3.5 Motif analysis:

We identify the motifs present in our Myelofibrosis genome ChIP-Seq. We used SeqPos motif analysis tool. The file, top 100 most significant peaks in bed format was selected for motif identification (Table 5).

Table - 5 Motif Analysis:

cluaters	collapred_ld	Factor	DNA binding domala	hita	cutoff	neore	$-10{ }^{\text {dogegipal }}$	${ }_{\substack{\text { aimilarity } \\ \text { top }}}$	mean_poaition
1	M01231	CLLIS3		46	2.86	-3.046	67,608		-0.152
2	Manoe24	E2F1	Fork head/ winged helix	48	0.965	-2.849	61.239		-0.143
	M00050	E2F1E2f E2F1 E2F4::TFDP1		54	0.858	-2.598	59.613	0.999	-0.127
	M00740			36	1.1.02	-2.395	47.896	0.983	-0.146
	M00738			51	0.78	-2.338	46.367	0.976	-0.122
3.	MA0145	Tefep211	CP2	52	2.579	.2.712	56.997		-0.133
4	HPDIO21	RFSCANK		31	4.327	-2.664	55.56		-0.152
5.	M01715	MACI		27	2.364	-2.48	30,257		-0.171
6.	M0D469	AP-2alpha/TFAP2A TFAP2A	Helix-Loop-Helix	31	4.772	-2.35	46,672		-0.159
	MA0003			31	4.772	-2.35	46.672	1.0	-0.155

3.6 SWISS PORT

Genes were selected from the Myelofibrosis genome, model using Swiss prot with Ramachandran plot.

Table: 6 Genes are involved in Myelofibrosis with Accession number:

Sl. No	Genes	Name	Accession number
1.	ENSMUST00000116495	Rap1gap2	NP_001015046.1
2.	ENSMUST00000183873	Lrrc1	NP_001139520.1
3.	ENSMUST0000058725	Antxr1	NP_766396.2
4.	ENSMUST00000025862	Smarca2	NP_035546.2
5.	ENSMUST00000113531	Lnx1	NP_001346003.1

Abbreviations of genes:

1. Rap1gap2: Rap1 GTPase activating protein-2
2. Lrrc1: Leucine rich repeat containing 1
3. Antxr1: Anthrax toxin receptor - like
4. Smarca2: Sw1/SNF related, matrix associated actin depended of chromatin subfamily
5. Lnx1: Ligand of numb protein x 1

The receptor model and corresponding Ramachandran plot results are given in Fig.6. Accession number used for modeling is given in table 6.

(Fig.6) Swiss-model generated receptor models with their Ramachandran plot.

4. KEGG pathway analysis:

Finally, from the annotation results our peaks table by taking top 100 most significant peaks, we identify the genes overlapping with these peaks which are given in Table 7. The pathways of these genes were identified from KEGG pathways names in Table: 7

Table: 7 Identified Genes and pathways

Sl. No.	GENES	PATHWAYS
1.	NP_001139520 to NM_001146048.1	Tight junctions (TJs)
2.	NP_001015046.1 to NM_001015046.	RAP1 signaling
3.	NP_766396.2 to NM_172808	cGMP - PKG signaling
4.	NP_035546.2 to XM_036161667.1	Thermogenesis
5.	NP_001346003.1 to XM_036164835.1	Tight junctions (TJs)

4.1 Tight Junctions (TJs) Pathway:

Tight junctions (TJs) are essential for establishing a selectively permeable barrier to diffusion through the paracellular space between neighboring cells. TJs are composed of at least three types of transmembrane protein -occluding, claudin and junctional adhesion molecules (JAMs)- and a cytoplasmic 'plaque' consisting of many different proteins that form large complexes. These are proposed to be involved in junction assembly, barrier regulation, cell polarity, gene transcription, and other pathways.

Fig. 7 Tight Junction Pathway

4.2 RAP1 signaling Pathway:

Rap1 is a small GTPase that controls diverse processes, such as cell adhesion, cellcell junction formation and cell polarity. Like all G proteins, Rap1 cycles between an inactive GDP-bound and an active GTP-bound conformation. A variety of extracellular signals control this cycle through the regulation of several unique guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Rap1 plays a dominant role in the control of cell-cell and cell-matrix interactions by regulating the function of integrin's and other adhesion molecules in various cell types. Rapl also regulates MAP kinase (MAPK) activity in a manner highly dependent on the context of cell types.

Fig. 8 RAP1 signaling Pathway

4.3 cGMP - PKG signaling Pathway:

Cyclic GMP (cGMP) is the intracellular second messenger that mediates the action of nitric oxide (NO) and natriuretic peptides (NPs), regulating a broad array of physiologic processes. The elevated intracellular cGMP level exerts its physiological action through two forms of cGMP-dependent protein kinase (PKG), cGMP-regulated phosphodiesterase's (PDE2, PDE3) and cGMP-gated cation channels, among which PKGs might be the primary mediator. PKG1 isoform-specific activation of established substrates leads to reduction of cytosolic calcium concentration and/or decrease in the sensitivity of myofilaments to $\mathrm{Ca} 2+(\mathrm{Ca} 2+$-desensitization), resulting in smooth muscle relaxation. In cardiac myocyte, PKG directly phosphorylates a member of the transient potential receptor canonical channel family, TRPC6, suppressing this nonselective ion channel's Ca2+ conductance, G-alpha-q agonist-induced NFAT activation, and myocyte hypertrophic responses. PKG also opens mitochondrial ATP-sensitive K+ (mitoKATP) channels and subsequent release of ROS triggers cardio protection.

Fig. 10 cGMP - PKG signaling Pathway

4.4 Thermogenesis Pathway:

Thermogenesis is essential for warm-blooded animals, ensuring normal cellular and physiological function under conditions of environmental challenge. Thermogenesis in brown and beige adipose tissue is mainly controlled by norepinephrine, which is released from sympathetic nervous system in response to cold or dietary stimuli. The mitochondrial uncoupling protein 1 (UCP1) is responsible for the process whereby chemical energy is converted into heat in these adipocytes. Activation of these adipocytes leads to an increase in calorie consumption and is expected to improve overweight conditions, providing a potential strategy for treating obesity and its related metabolic disorders

Fig. 10 Thermogenesis Pathway

4.5 Tight Junction (TJs) Pathway:

Tight junctions (TJs) are essential for establishing a selectively permeable barrier to diffusion through the paracellular space between neighboring cells. TJs are composed of at least three types of transmembrane protein -occluding, claudin and junctional adhesion molecules (JAMs)- and a cytoplasmic 'plaque' consisting of many different proteins that form large complexes. These are proposed to be involved in junction assembly, barrier regulation, cell polarity, gene transcription, and other pathways.

Fig. 12 Tight Junction Pathway

1. CONCLUSION

A high-quality immunoprecipitation ChIP peak is detected in our results which imply high concentration of DNA binding proteins. Further, motifs were detected from the ChIP peak. Further, top DNA binding protein genes were identified and corresponding pathways was identified from KEGG pathway. Tight junctions (TJs) pathway, RAP1 signaling pathway, cGMP - PKG signaling pathway, Thermogenesis pathway and Tight junctions (TJs).

6. REFERENCES

1. Deliard S, Zhao J, Xia Q, Grant SF. Generation of high quality chromatin immunoprecipitation DNA template for high-throughput sequencing (ChIP-seq). J Vis Exp. 2013 Apr 19;(74):50286.
2. Furey TS. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet. 2012;13(12):840-852.
3. Pavesi, Giulio (2016). [Advances in Biochemical Engineering/Biotechnology] || ChIP-Seq Data Analysis to Define Transcriptional Regulatory Networks., (Chapter 43), - . doi:10.1007/10_2016_43.
4. Meyer CA, Liu XS. Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nat Rev Genet. 2014;15(11):709-721.
5. Rumi E, Trotti C, Vanni D, Casetti IC, Pietra D, Sant'Antonio E. The Genetic Basis of Primary Myelofibrosis and Its Clinical Relevance. Int J Mol Sci. 2020 Nov 24;21(23):8885. doi: 10.3390/ijms21238885. PMID: 33255170; PMCID: PMC7727658.
6. Mughal TI, Vaddi K, Sarlis NJ, Verstovsek S. Myelofibrosis-associated complications: pathogenesis, clinical manifestations, and effects on outcomes. Int J Gen Med. 2014;7:89-101. Published 2014 Jan 29. doi:10.2147/JJGM.S51800.
7. Zahr AA, Salama ME, Carreau N, Tremblay D, Verstovsek S, Mesa R, Hoffman R, Mascarenhas J. Bone marrow fibrosis in myelofibrosis: pathogenesis, prognosis and targeted strategies. Haematologica. 2016 Jun;101(6):660-71. doi: 10.3324/haematol.2015.141283. PMID: 27252511; PMCID: PMC5013940.
8. J. T. Reilly; D. Barnett; G. Dolan; P. Forrest; J. Eastham; A. Smith (1993). Characterization of an acute micromegakaryocytic leukaemia: evidence for the pathogenesis of myelofibrosis. , 83(1), 58-62. doi:10.1111/j.1365-2141.1993.tb04631.x
9. Tefferi A. Primary myelofibrosis: 2019 update on diagnosis, risk-stratification and management. Am J Hematol. 2018 Dec;93(12):1551-1560. doi: 10.1002/ajh.25230. Epub 2018 Oct 26. PMID: 30039550.
10. ().The Korean Journal of Internal Medicine, 33(4), -. doi:10.3904/kjim.2018.033
11. Ambrosini, G., Dreos, R., Kumar, S. et al. The ChIP-Seq tools and web server: a resource for analyzing ChIP-seq and other types of genomic data. BMC Genomics 2016, 17, 938.
12. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012 Mar 4;9(4):357-9. doi: 10.1038/nmeth.1923. PMID: 22388286; PMCID: PMC3322381.
13. Mark T. W. Ebbert,Mark E. Wadsworth,Lyndsay A. Staley... (2016). Evaluating the necessity of PCR duplicate removal from next-generation sequencing data and a comparison of approaches. BMC Bioinformatics, 17(7 Supplement), -. doi:10.1186/s12859-016-1097-3
14. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS. (2008) Model-based Analysis of ChIP-Seq (MACS), Genome Biology, 2008;9 (9):R137.
15. Baxevanis, Andreas D.; Petsko, Gregory A.; Stein, Lincoln D.; Stormo, Gary D. (2002). Current Protocols in Bioinformatics || Using MACS to Identify Peaks from ChIP-Seq Data., (), -. doi:10.1002/0471250953.bi0214s34
16. Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 2000 Jan 1;28(1):45-8. doi: 10.1093/nar/28.1.45. PMID: 10592178; PMCID: PMC102476.
17. Hollingsworth SA, Karplus PA. A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. Biomol Concepts. 2010 Oct;1(3-4):271283. doi: 10.1515/BMC.2010.022. PMID: 21436958; PMCID: PMC3061398.
18. Mannige, R. V., Kundu, J., \& Whitelam, S. (2016). The Ramachandran Number: An Order Parameter for Protein Geometry. PLOS ONE, 11(8), e0160023. doi:10.1371/journal.pone. 0160023
19. Salma Aouled El Haj Mohamed, Mourad Elloumi and Julie D. Thompson (December 14th 2016). Motif Discovery in Protein Sequences, Pattern Recognition - Analysis and Applications, S. Ramakrishnan, IntechOpen, DOI: 10.5772/65441
20. Altermann, E., Klaenhammer, T.R. PathwayVoyager: pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. BMC Genomics 6, 60 (2005). https://doi.org/10.1186/1471-2164-6-60.
21. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27-30. doi:10.1093/nar/28.1.27

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

