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Abstract. A semiconductor fab has complex wafer lot movements between ma-

chines and workstations. To ensure a smooth flow of the wafer lots, the system 

must be observed appropriately. Observation of such a complicated system is 

possible using machine learning. In this study, various machine learning tech-

niques are applied to predict the semiconductor fab’s throughput when consid-

ering wafer lot processing and queuing status at the machines and the machine 

utilization. The accuracies of the models are compared. It is shown that the ran-

dom forest model obtained the best accuracy of more than 97%. Compared with 

the previous study, this study considers more models to allow a more compre-

hensive evaluation. The findings are important for providing suggestions on 

machine learning model selection for predicting the output of a semiconductor 

fab. 

Keywords: Semiconductor Fab, Classification, Prediction, Machine Learning, 

Model Evaluation. 

1 Introduction 

Semiconductor fab has a complex environment due to the re-entrants of wafers to 

workstations and the usage of parallel machines [1]. The movement of wafers in a 

semiconductor fab (Intel minifab) is illustrated in Figure 1. Before being processed at 

workstation 1, the wafer lots must be grouped into batches first. Please refer to Sing-

gih [1] to obtain more details on the simulation used for the data collection, the re-

quired processing times on the machines, and the arrival schedule of the wafer lots.  

  

© The Author(s) 2023
M. Hartono et al. (eds.), Proceedings of the 4th International Conference on Informatics, Technology and
Engineering 2023 (InCITE 2023), Atlantis Highlights in Engineering 21,
https://doi.org/10.2991/978-94-6463-288-0_24

mailto:ivanksinggih@staff.ubaya.ac.id
mailto:s.soegiharto@staff.ubaya.ac.id
http://orcid.org/0000-0002-9414-2549
http://orcid.org/0009-0009-9175-3078
https://doi.org/10.2991/978-94-6463-288-0_24
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-288-0_24&domain=pdf


Singgih [1] has shown that some classification machine learning models could be 
used to predict the system’s weekly throughput when considering various product and 
machine-related information, e.g., the number of processed wafer lots on each ma-
chine, number of wafer lots on the machine queues, and machine utilization. 

 

 
Fig. 1. Wafer flow in Intel semiconductor minifab. 

 
Fig. 2. The digital twin framework for the semiconductor process analysis. 

The system proposed by Singgih [1] was a digital twin (Figure 2). In this digital 
twin system, real-time data related to the wafer lot processing and machine status can 
be collected using IoT sensors placed on the machines and their queues. This wafer 
lot processing and machine status show how well the operation was optimized, e.g., 
using batching, allocation, and scheduling decisions. In other words, when good op-
timization decisions are made, the wafer lot flow would be smooth, e.g., all machines 
are highly utilized, less queuing times, etc., and the weekly target throughput would 
be satisfied. By observing the production status information as input data, and the 
throughput satisfaction level (e.g., low and high) as the target (output) each week, 
Singgih [1] stated that the relationships between those input and output data could be 
identified. Using the same framework for finding the relationships between the input 
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and output data, the importance of each input data could also be observed, e.g., by 
iteratively considering a different set of input data, as conducted by Singgih [1].  

This study continues the study of Singgih [1] by applying more classification ma-
chine learning models to allow a more comprehensive evaluation of various models. 
The contributions of this study are: 
1. This study proposes a multi-model performance-based general feature selection 

scheme. Based on models with high accuracy in Singgih [1], this study identifies 
important input factors that tend to remain longer in each of the best models 
when the number of factors was reduced iteratively in Singgih [1]. Then, the fac-
tors are sorted based on their importance and a threshold is set to obtain generally 
important input factors.  

2. This study tests more classification machine learning models using the selected 
factors to allow a more comprehensive evaluation of the machine learning mod-
els. This evaluation allows researchers to understand the performance of more 
machine learning models when dealing with the semiconductor fab optimization 
and provides insights for selecting methods when solving similar problems in the 
semiconductor fab. 

 
The structure of this study is as follows. Solution methodology section presents the 

proposed feature selection scheme and the considered classification machine learning 
models. Numerical experiments and analysis section shows the numerical experiment 
results. The last section concludes the study.  

2 Solution Methodology 

The classification machine learning models considered by Singgih [1] are considered 
with the addition of models listed in Scikit-learn [2] that are classified into (1) ensem-
ble methods, (2) Gaussian processes, and (3) Naive Bayes. In this study, models that 
were not included yet by Singgih [1] are selected, especially those in categories with 
no representative yet or models from categories with good performing methods in 
Singgih [1]. The complete list of considered classification machine learning models in 
this study is shown in Table 1. 

The research methodology is shown in Figure 3. This study lists the features relat-
ed to wafer processing and machine information based on results of Singgih [1]. 
Singgih [1] reduced the number of considered input data in the four best prediction 
models (AB, GB, RF, CART) by removing one input data from the complete model 
(of 42 input data) iteratively until the accuracy of each model is no longer improved 
(Figure 4, left side). The iteration number when each input data (out of 42 data) was 
removed is shown in Figure 4 (right side). Given the iteration numbers on the right 
side, each input data is sorted from the most important one (the ones removed at the 
larger number of iterations and tend to remain at final models). When selecting the 
final important input data, this study chooses them starting from the ones removed at 
the largest number of iterations and continues selecting the less important ones until 
input data with a certain number of iterations, as long as the input data is still included 
in the final version of any of the four selected models. After selecting the final im-

270             I. K. Singgih et al.



portant input data, they are used to test all classification machine learning models 
listed in Table 1. The details on the classification results for the model with the best 
accuracy are presented.  

 

Table 1. List of considered classification machine learning models in this study. 

No [Abbreviation] Model Name Explanation 
1 [AB] Adaptive Boosting 

Please refer to Singgih [1] for the definition of AB 
until SVM  

2 [SGD] Linear classifiers with 
stochastic gradient descent 
training 

3 [NNMLP] Neural Network 
(Multilayer Perceptron) 

4 [GB] Gradient Boosting 
5 [RF] Random Forest 
6 [KNN] K-Nearest Neighbors 
7 [CART] Classification and 

Regression Tree 
8 [NB] Gaussian Naive Bayes  
9 [SVM] Support Vector Ma-

chine (C-support Vector) 
10 [Ensemble: BC] Bagging 

Meta-estimator 
Bagging meta-estimator is an ensemble meta-

estimator that utilizes a number of weaker predic-
tion models. The performances of individual base 
classifiers are aggregated to make a final predic-

tion [3]. 
11 [Ensemble: HBC] Histogram-

Based Gradient Boosting 
Histogram-based gradient boosting is a boosting 
ensemble that selects the best splits based on the 

feature histograms [4]. 
12 [Naive Bayes: MNB] Multi-

nomial Naive Bayes 
Multinomial Naive Bayes is a Naive Bayes im-

plemented for a multinomially distributed data [5]. 
Naive Bayes methods consider that the conditional 
probabilities of independent variables are statisti-

cally independent [6].   
13 [Naive Bayes: CoNB] Com-

plement Naive Bayes 
Complement Naive Bayes is a complement variant 

of MNB [7]. CoNB deals with the “severe as-
sumptions” in the MNB [8]. 

14 [Naive Bayes: BNB] Bernoulli 
Naive Bayes 

Bernoulli Naive Bayes is a Naive Bayes method 
that classifies data, which are distributed in multi-

variate Bernoulli distributions [9]. 
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3 Numerical Experiments and Analysis 

 
Fig. 3. Research methodology. 

 
Fig. 4. A complete list of 42 input data in Singgih [1] and the iteration number when each input 
data was removed from the models (average of four best models). 

 
List of the 42 initial input data was considered in Singgih [1]. The output data is the 
high throughput and low throughput classes. The Intel minifab was designed to satisfy 
84 wafer lot-throughput target every week. Therefore, the high throughput class is 
defined with 84-95 wafer lots per week, meanwhile, the low throughput class is de-
fined with 73-83 wafer lots per week. The generated throughput during the simulation 
in Singgih [1] was ranged between 73-95 wafer lots, based on the dynamics caused by 
the stochasticity in the emergency maintenance, the limited capacity in the machines’ 
queues, and the capacities of the machines. The input data are sorted based on the 
iteration number for their removal (presented in Figure 4, right side) in descending 
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order, and the results are shown in Table 2. The most important input data are listed at 
the top. Input data that remained until iteration 19 during the removal procedure in 
Singgih [1] are selected. The other data are considered to be less important. 

Table 2. Selected input data sorted based on their average number of iterations when they were 
removed from the four best models in Singgih [1]. 

No Data Name (Unit in One Week) 
Removal 
Iteration 

Index 

Inclusion in Which 
Model (Among the 

Best Four Ones) 
26 Amount of lots that completed step 3 at machine E 43 AB, GB, RF 

27 Amount of lots that completed step 6 at machine E 43 AB, GB, RF, 
CART 

41 Idle time portion of machine D (in percentage) 40 AB, GB, RF 
42 Idle time portion of machine E (in percentage) 38 AB, GB, RF 

31 
Available processing time on machine D (in per-
centage, after removing the preventive and emer-

gency maintenance times)  
37 AB, GB 

11 Amount of lots for step 5 at machine B’s buffer  34 GB 

35 
Utilization of machine C (in percentage, after 

removing the preventive, emergency maintenance, 
and idle times)  

33 AB, GB, RF 

6 Amount of lots for any step at machine A and B’s 
buffers  32 GB, RF 

14 Amount of lots for step 2 at machine D’s buffer  32 AB, GB 
18 Amount of lots for step 1 at machine A’s buffer  31 AB, GB 
16 Amount of lots for step 3 at machine E’s buffer  30 AB, GB 
22 Amount of lots that completed step 2 at machine C  30 AB, RF 
39 Idle time portion of machine B (in percentage) 29 GB 
40 Idle time portion of machine C (in percentage) 29 AB 
2 Amount of lots for any step at machine B’s buffer  28 AB 
12 Amount of lots for step 2 at machine C’s buffer  28 RF 
15 Amount of lots for step 4 at machine D’s buffer  28 RF 
21 Amount of lots that completed step 5 at machine B  25 GB 
23 Amount of lots that completed step 4 at machine C  24 RF 
9 Amount of lots for step 5 at machine A’s buffer  23 AB 
13 Amount of lots for step 4 at machine C’s buffer  22 GB 
24 Amount of lots that completed step 2 at machine D  22 AB 

30 
Available processing time on machine C (in per-
centage, after removing the preventive and emer-

gency maintenance times) 
22 GB 

25 Amount of lots processed at machine D for pro-
cessing step 4  21 AB 

38 Idle time portion of machine A (in percentage) 21 - 

32 Available processing time on machine E (in per-
centage, after removing the preventive and emer- 20 RF 
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No Data Name (Unit in One Week) 
Removal 
Iteration 

Index 

Inclusion in Which 
Model (Among the 

Best Four Ones) 
gency maintenance times) 

1 Amount of lots for any step at machine A’s buffer  19 RF 
3 Amount of lots for any step at machine C’s buffer  19 AB 
8 Amount of lots for step 1 at machine A’s buffer  19 - 

 
Classification machine learning models in Table 1 are evaluated. Among 10,086 

data records, 80% of them are used as training data, while 20% of them are used as 
testing data. Using the training data and 10-fold cross-validation, the accuracy of the 
models is obtained, as shown in Figure 5. The average and standard deviation of the 
accuracy for each model are presented in Table 3. 

 
Fig. 5. Accuracy of the classification machine learning models represented in box plots. 

Table 3. Accuracy of each classification machine learning model. 

Model Average of the accuracy (%) Standard deviation of the accuracy (%) 

AB 97.695  0.389 
SGD 71.255 7.101 

NNMLP 77.578 1.773 
GB 97.794 0.308 
RF 97.831 0.279 

KNN 70.339 1.689 
CART 95.910 0.593 

NB 91.968 0.970 
SVM 78.173 1.457 
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Model Average of the accuracy (%) Standard deviation of the accuracy (%) 

BC 70.823 1.865 
HBC 97.744 0.247 
MNB 68.047 0.716 
CoNB 69.930 1.994 
BNB 64.564  0.029 

 
The best model is the random forest which reaches an average accuracy of 

97.831%. Other models that produce an accuracy of more than 95% and are worth 
further investigation are Adaptive Boosting, Gradient Boosting, Classification and 
Regression Tree, and Histogram-Based Gradient Boosting. The random forest was 
then tested using the testing data, and the obtained accuracy was 97.671%. This study 
concluded that the best model is the random forest, which is the same with the con-
clusions made by Singgih [1]. However, differently from Singgih [1], this study found 
that Histogram-Based Gradient Boosting has a high accuracy as well. 

4 Conclusions 

In this study, a framework to identify important input data for predicting throughput 
in a semiconductor fab is proposed. More classification machine learning models are 
also tested and it was shown that random forest obtained the best average accuracy of 
more than 97%. Other models worth further investigation are Adaptive Boosting, 
Gradient Boosting, Classification and Regression Tree, and Histogram-Based Gradi-
ent Boosting. 

The following topics are suggested for further studies: (1) studying how specific 
operations research-related decisions could be made to obtain better values for the 
important input data, e.g., more number of processed wafer lots, less machine idle 
times, etc., (2) observing the same production problem using regression models, in-
stead of the classification ones to allow observing more detailed behaviors of the sem-
iconductor fab. 
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