

Investigation Related to the Influence of Two Data

Parallel Strategies on Pytorch-Based Convolutional

Neural Network Model Training

Hao Xue

Software engineering, Hefei University of Technology, Hefei, 230601, China

Email: 2015214433@mail.hfut.edu.cn

Abstract. The escalating prevalence of Convolutional Neural Networks

(CNNs) coupled with the incessant growth in both model variants and datasets

necessitates the formulation of a judicious data parallelism approach to

effectively enhance the pace of model training. This imperative arises as a

significant challenge confronted by developers and researchers alike. This paper

compares data parallelism and distributed data parallelism. Experiments were

designed using the CIFAR-10 and VGG16 models. It is found that the training

time of multi-GPU adopting data parallel strategy is not ideal. Analyze the

reasons for unsatisfactory training time by studying the impact of hardware and

hyperparameters on the data parallel strategy. The data path dependence may be

the main reason affecting the training time of the data parallel strategy from the

unbalanced GPU usage rate when the data parallel strategy is used. The

distributed data parallel strategy training model is compared with the data

parallel strategy, and the difference between the results of the two is analyzed.

Provides advice on the choice of data parallel strategy. The experimental results

show that hardware and hyperparameters are not the main reasons for the

unsatisfactory training time of the data parallel strategy. Distributed data

parallel strategy training time is better than data parallel strategy, but it needs to

ensure the accuracy with multiple GPUs.

Keywords: CNN, Data Parallel, Deep Learning.

1. Introduction

© The Author(s) 2023
P. Kar et al. (eds.), Proceedings of the 2023 International Conference on Image, Algorithms and Artificial
Intelligence (ICIAAI 2023), Advances in Computer Science Research 108,
https://doi.org/10.2991/978-94-6463-300-9_62

Convolutional neural networks (CNNs) have emerged as a prominent deep learning
architecture, particularly for tasks involving computer vision in the last decade [1-4].
It is widely used in transportation, medical care, face recognition, video analysis,
natural language processing and many other aspects. In some scenarios, the model has
relatively high requirements for training speed, such as automatic driving, Chat GPT
language training, and the automatic driving model requires rapid response to road
conditions. The GPT-4 model has trillions of parameters. These popular CNNs
models require timely feedback to update the model, or because the basic model has a
large number of parameters, it is hoped to speed up the training speed of CNNs large
models. In recent times, the advancement of storage devices has facilitated the

https://doi.org/10.2991/978-94-6463-300-9_62
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-300-9_62&domain=pdf

frequent updates and expansion of datasets. ChatGPT With the structure of neural
network and the framework of constructing neural network structure e.g., TensorFlow
and Pytorch determined, how to use limited computer hardware resources to complete
a large number of computing tasks has become an important issue. Data parallelism is
a common strategy to solve this problem.
PyTorch, an open-source Python library for machine learning, is widely selected as

the framework for conducting the research [5]. Deep learning is facing challenges of
increasing dataset size and model complexity. Therefore, to train a model effectively
and efficiently requires significant computing power. Using a system with multiple
GPUs reduces training time, which speeds up application development and further
reduces iteration cycles. Teams that can use multiple GPUs to implement data
parallelism execution training will have a greater advantage, building models trained
on more data in less time, greatly improving the productivity of engineers. PyTorch
provides two different data parallelism strategies, Data Parallel (DP) and Distributed
Data Parallel (DDP) As CNN model training requires a huge amount of computing.
Although data parallelism can address some resource allocation issues, as the number
of devices increases, it becomes crucial to investigate whether training results
obtained from two different data parallelism strategies remain similar when data is
distributed across multiple GPUs. Whether using a data parallel strategy and
increasing the number of GPUs will definitely speed up the training processing.
Whether multiple GPUs will affect the calculation accuracy due to data parallel
processing. Whether the modification of hyperparameters has an impact on the final
training results of different data parallelism strategies is a topic worth considering.
Although many studies have been done on how to improve the efficiency of the
model, they mainly focus on how to optimize the parallel algorithm [6]. Furthermore,
it is more biased towards how to optimize the Pytorch DDP strategy [7], and there are
fewer studies comparing the training effects of DP and DDP and exploring the
reasons.
The purpose of this paper is to study the advantages and disadvantages of different

data parallel strategies for CNN training, taking data parallelism in VGG16 of the
classic CNN model as an example. It not only explores the influence of different GPU
models and different numbers of GPUs on the training speed and accuracy, but also
whether the hyperparameters epoch and batch-size designed in the experimental
training also affect the experimental results. Then designing an experiment to study
whether DDP can improve performance compared to DP. In order to prove the
universality, it was also verified on Lenet, which is also a CNN model. This article
involves experiments to prove that the use of the DDP strategy is superior to the use
of the DP strategy in terms of training speed. Hyperparameters also affect the final
experimental results to a certain extent, and finally provide strategy selection
suggestions and parameter configuration suggestions for CNN model data parallelism,
so that experimenters can take into account training speed and accuracy according to
their own needs.

Investigation Related to the Influence of Two Data Parallel Strategies 601

2. Method

2.1 Dataset Description and Preprocessing

The CIFAR-10 data set consists of a collection of 60,000 32×32 color pictures, with a
total of 10 categories, distributed across 10 distinct categories. There are 50,000
training images and 10,000 testing images. The dataset is divided into 5 training
blocks and 1 testing block, each block has 10,000 images. The test block contains 1,
000 images randomly selected from each category. The training blocks contain
random residual images, but some training blocks may contain more for one category
than others, and the training blocks contain 5, 000 images from each category.
2.2 Deep Learning Model

This paper selects the VGG16 as a benchmark model [8], which is a deep network
model developed by the computer vision group of Oxford University and researchers
from Google DeepMind in 2014. The VGG16 network won second place in the
classification project of the ILSVRC 2014 competition and the first place in the
positioning project. The network's architecture is characterized by its simplicity and
strong generalization capabilities when applied to diverse image datasets, making it a
popular choice for feature extraction. Additionally, the LeNet-5 is chosen as an
experimental test model. LeNet-5 is a convolutional neural network model proposed
by Yann LeCun et al. in 1998 [9]. It has significantly influenced the field of deep
learning and garnered substantial success in handwritten character recognition tasks.
Given that the CIFAR-10 dataset comprises ten distinct classes, adjustments are made
to the number of neurons in the final layer of the LeNet-5 model to accommodate the
ten output categories.
2.3 Data Parallelism Technology

DP is a data parallelism method proposed earlier, which will open a single process
and multiple threads for data parallelization. The training process is divided into
forward propagation and back propagation, taking the first forward propagation as an
example shown in Fig. 1:

Fig. 1. Forward propagation of DP (Photo/Picture credit: Original).

602 H. Xue

The model and mini-batch data will be put on GPU:0 (masterGPU). In the first
step, GPU:0 will divide the data into sub-mini-batch and scatter to other GPUs. In the
second step, GPU:0 will copy its own model parameters to other GPUs. Each GPU
has the same model parameters. In the third step, each GPU forward-propagates its
sub-mini-batch data on a separate thread to obtain the output of the model. In the
fourth step, GPU:0 as masterGPU will collect the output results of all GPUs.

Similar to forward propagation, backpropagation requires GPU: 0 to calculate loss
with the real label and get the gradient of loss after getting all the results. GPU: 0 will
scatter the loss gradient to all GPUs, and each GPU will calculate the gradient of all
parameters according to the backpropagation of the loss gradient. After that, the
parameter gradients calculated on all GPUs will be summarized on GPU:0, and
GPU:0 will then update the parameters. Thus, completing the model training of a
batch. During the whole process, GPU0 only provides data to other GPUs and does
not provide labels. After obtaining the calculation results, GPU0 calculates loss and
gradients and distributes them to all GPUs to calculate parameter gradients. After
GPU0 obtains these data, it updates the parameters.

Compared with DP's single-process multi-thread. DDP strategy, multi-process is
selected, there is no MasterGPU, and each GPU performs the same task. Each process
loads its own data from disk. Distributed data samplers ensure that loaded data does
not overlap across processes. The forward pass and computation of the loss function
is performed independently on each GPU. Also, during backpropagation, gradient
descent is performed on all GPUs.
2.4 Implementation Details

The optimizer used in the training model in this paper is stochastic gradient descent,
with a momentum value of 0.9 and a learning rate of 0.001. On this basis, experiments
were carried out on the DP and DDP strategies respectively. Under the DP strategy,
the batch-size value was 64, the epoch value was 10, and GPUs selected four 2080ti
as the benchmark experiment. Setting different GPU types, batch-size, and epoch
values for subsequent experiments. Then the paper uses the DDP strategy to conduct
experiments under the same conditions as the benchmark experiment. The conducted
experiments analyze and compare the factors contributing to the unsatisfactory
training speed observed with the DP strategy, focusing on hardware and
hyperparameters. Furthermore, the advantages and disadvantages of the DDP strategy
in comparison to the DP strategy are also evaluated and discussed. Subsequent
paragraphs, however, are indented.

3. Results and Discussion

3.1 The Performance of the Model Using DP Strategy Based on Multiple GPUs

Adopting the DP strategy to train the VGG16 model with 4 NVIDIA 2080ti graphics
cards under the condition that the batch-size, epoch, and other hyperparameters
remain unchanged, and the training time and accuracy are shown in Table 1. As the
number of GPUs increased, the training time gradually increased, and the accuracy

Investigation Related to the Influence of Two Data Parallel Strategies 603

did not change significantly. Fig. 2 shows the usage of each GPU, indicating GPU0
usage is higher than other GPUs.

Table 1. The influence of number of GPUs in accuracy and time (batch-size=64, epoch=10,
GPU:2080Ti, strategy: DP).

Number of GPUs 1 2 3 4
Time(s) 148.73 420.61 890.39 2823.97
Acc(%) 80 79 79 79

Fig. 2. GPUs usage (Photo/Picture credit: Original).

Multiple GPUs did not produce a significant drop in accuracy compared to a single
GPU. However, the purpose of the parallel strategy is to reduce the training time
overhead of the model. In this experiment, the time overhead did not decrease but
increased in the case of multi-GPUs data parallelism. Obviously, this result does not
meet the goal of parallel computing. According to the principle of DP policy, GPU0
distributes data to other GPUs, GPU0 usage is higher than other GPUs.
3.2 The Impact of Hardware on DP Strategy

This paper selects the VGG16 as a benchmark model, which is a deep network model
developed by the computer vision group of Oxford University and researchers from
Google DeepMind in 2014 [8]. The VGG16 network won the second place in the
classification project of the ILSVRC 201

Table 2. The influence of GPU type and number in accuracy and time (batch-size=64,
epoch=10, strategy: DP)

GPU 3090×1 3090×2 3090×4 2080Ti×1
Time(s) 93.39 603.27 3464.09 148.73
Acc (%) 79 79 79 80

604 H. Xue

It can be foparallel,le 2 that the accuracy of model training is still stable without
changing the hyperparameters, and the training performance of 3090 on a single GPU
is better than that of 2080Ti, but Nvidia-3090 also demonstrated that the more GPUs
are used in parallel, the training time increases instead, and even the more powerful
the hardware performance, the longer it takes to adopt the same strategy.

Table 2 shows that after changing the GPU to 3090. The greater the number of
parallel GPUs, the longer the time overhead. Compared with the previous experiment,
the performance of 3090 is worse than that of 2080ti in the case of 2 GPUs and 4
GPUs. Experimental comparison of 3090 and 2080ti under a single GPU proves that
the performance of 3090 is stronger than that of 2080ti. Through the comparison of
these two experiments, it is found that the reason for the unsatisfactory training time
of DP strategy is not the hardware.
3.3 The Impact of Hyperparameters on DP Strategy

Table 3, Table 4 can be compared with the experimental results of Table 1. Increasing
the batch-size does not improve the unfavorable situation that the more parallel GPUs,
the longer the training time. And as the batch-size increases, the accuracy of model
training also decreases.

Table 3. The influence of the number of GPUs on accuracy and time with batch-size=128
(batch-size=128, epoch=10, GPU:2080Ti, strategy: DP)

Number of GPUs 1 2 4
Time(s) 121.52 239.60 1535.89
Acc (%) 77 77 76

Table 4. The influence of the number of GPUs on accuracy and time with batch-size=256
(batch-size=256, epoch=10, GPU:2080Ti, strategy: DP)

Number of GPUs 1 2 4
Time(s) 107,95 149.13 696.53
Acc (%) 74 74 73

Increasing the batch-size can indeed reduce the time spent on training when other
conditions remain unchanged. The reason for the suboptimal training time of the DP
strategy is not the batch-size. After determined the impact of batch-size on training.
This paper next tests the impact of epoch on training.

Table 5. The influence of epoch on accuracy and time with two GPUs (batch-size=64,
GPU=2080Ti×2, strategy: DP)

Epoch 3 5 10 15 20
Time(s) 131.35 197.03 420.61 693.42 751.02
Acc (%) 74 78 80 79 80

Investigation Related to the Influence of Two Data Parallel Strategies 605

Table 6. The influence of epoch on accuracy and time with four GPUs (batch-size=64,
GPU=2080Ti×4, strategy: DP)

Epoch 3 5 10 15 20
Time(s) 766.25 1281.60 2823.97 4727.20 5549.49
Acc (%) 74 78 79 79 80

According to Table 5, and 6, with the increase of epoch, although the accuracy of
model training increases, the model training accuracy tends to converge after reaching
a certain Epoch value, while the time spent training the model still increases almost
linearly.

Similar to Table 3 and 4, adjusting the epoch value does not solve the problem that
the DP strategy makes the time spent of multiple GPUs longer than the time spent of a
few GPUs.
3.4 The Performance of the Model Using DDP Strategy Based on Multiple Gpus

After excluding hardware and hyperparameter factors, this paper considers whether
the DP strategy itself has defects. The following design experiment adopts the DDP
strategy for VGG16. It can be seen from Table 7 that the time spent on training the
VGG model using the DDP strategy in Table 7 is more in line with the actual purpose
of data parallelism: reducing the time spent on model training. However, different
from the DP strategy, the model trained by the DDP strategy begins to decrease as the
number of GPUs increases. previous Tables has confirmed that as the batch-size
increases, the speed can be improved, and the model accuracy can be reduced. As the
epoch increases, while the training time increases linearly, the accuracy of the model
increases with time and finally converges. To confirm that the DDP strategy does
reduce the accuracy of the parallel model under multiple GPUs, Table 8 is designed
again: replace the LeNet-5, which is also a CNN model, for verification.

Table 7. The influence of number of GPUs in accuracy and time with VGG16 (batch-size=64,
epoch=10, GPU:2080Ti, strategy: DDP, Model: VGG16)

Number of GPUs 1 2 3 4
Time(s) 148.30 90.52 65.31 56.15
Acc(%) 79 78 76 73

Table 8. The influence of number of GPUs in accuracy and time with LeNet-5 (batch-size=64,
epoch=10, GPU:2080Ti, strategy: DDP, Model: LeNet-5)

Number of GPUs 1 2 3 4
Time(s) 116.15 67.23 48.75 44.21
Acc (%) 52 51 48 44

606 H. Xue

The similar results obtained in Table7 and Table 8 further indicate that the DDP
strategy is very effective in shortening the training time of the model, but it still faces
the problem of multi-GPU parallelism to improve performance but reduce accuracy.
3.5 Discussion on the Reasons Affecting the Performance of DP and DDP

The DP strategy may have many adverse effects from the perspective of saving time
and cost, even from the exploration of hyperparameters such as batch-size and epoch,
it is still difficult to make the DP strategy reduce the model training time. The DDP
model has achieved the task of reducing training time very well. For the DP strategy,
it does not reduce the time overhead but increases it. This article is guessed as
follows:

Data dependence: DP only has MasterGPU to load data from the disk [10], and the
MasterGPU must distribute the summary data every time it is forwarded and
backward propagated. time. The remaining GPUs are data dependent on the
MasterGPU, and their computing speed is greatly limited by the Master GPU in the
DP strategy. Fig. 2 also shows that the utilization rate of the MasterGPU is
significantly higher than that of other GPUs.

The time overhead weighted by communication cost is too large: unnecessary
times of scatter and gather data is a huge time overhead. There is no such huge time
overhead in the case of DDP strategy and single card.

Similarly, while DDP reduces the time overhead, the accuracy of model training in
multi-GPU scenarios is also reduced. It is possible that the DDP strategy evenly
distributes a batch of data to multiple GPUs, and independently calculates the loss and
gradient on each GPU. If it is not synchronized BN, then the mean and variance
calculated on each GPU are only for the data allocated by this GPU, which will lead
to inconsistent output of the BN layer and affect the model output accuracy.

4. Conclusion

In this paper, the effects of two data parallelism strategies DP and DDP on the model
training performance under the Pytorch architecture are verified through experiments.
Designed experiments to study the reasons that affect the performance of DP strategy
from the aspects of hardware and hyperparameters. Analyzed the reason why the
training time of DP strategy is not ideal in multi-GPU parallelism. The experimental
results show that the unsatisfactory training time of DP strategy has little correlation
with hardware and hyperparameters. Compared with the DP strategy, the DDP
strategy can significantly improve the training speed when using multiple GPUs, but
it needs to pay attention to maintaining the training accuracy. In the future, further
study plans to test more hyperparameters and data sets to explore when the DP
strategy can effectively reduce the training time and when it will increase the time
overhead, so as to make recommendations when implementing data parallelism.

Investigation Related to the Influence of Two Data Parallel Strategies 607

References

1. Kayalibay, B., Jensen, G., et al.: CNN-based segmentation of medical imaging data. arXiv
preprint arXiv:1701.03056 (2017).

2. Qiu, Y., Wang, J., Jin, Z., et al.: Pose-guided matching based on deep learning for
assessing quality of action on rehabilitation training. Biomedical Signal Processing and
Control, 72: 103323 (2022).

3. Nguyen, T., Nguyen, G., Nguyen, B. M.: EO-CNN: an enhanced CNN model trained by
equilibrium optimization for traffic transportation prediction. Procedia Computer Science,
176: 800-809 (2020).

4. Jiang, H., et al: Face detection with the faster R-CNN. 2017 12th IEEE international
conference on automatic face & gesture recognition (FG 2017). IEEE, 650-657 (2017).

5. Paszke, A., Gross, S., Massa, F., et al.: Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information processing systems, 32 (2019).

6. Tang, Z., Shi, S., Chu, X., et al.: Communication-efficient distributed deep learning: A
comprehensive survey. arXiv preprint arXiv:2003.06307 (2020).

7. Li, S., Zhao, Y., Varma, R., et al.: Pytorch distributed: Experiences on accelerating data
parallel training. arXiv preprint arXiv:2006.15704 (2020).

8. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556 (2014).

9. Le, Y., Bottou, L., Bengio, Y., et al.: Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11): 2278-2324 (1998).

10. Li, S., Zhao, Y., Varma, R., et al.: Pytorch distributed: Experiences on accelerating data
parallel training. arXiv preprint arXiv:2006.15704 (2020).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
 The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

608 H. Xue

http://creativecommons.org/licenses/by-nc/4.0/

	1. Introduction
	2. Method
	2.1 Dataset Description and Preprocessing
	2.2 Deep Learning Model
	2.3 Data Parallelism Technology
	2.4 Implementation Details
	3.Results and Discussion
	3.1 The Performance of the Model Using DP Strategy Ba
	3.2 The Impact of Hardware on DP Strategy
	3.3 The Impact of Hyperparameters on DP Strategy
	3.4 The Performance of the Model Using DDP Strate
	3.5 Discussion on the Reasons Affecting the Perfo
	4.Conclusion
	In this paper, the effects of two data parallelism

	References

