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Abstract. This paper designs experiments to investigate the impact of different 

GPU counts on occupancy, accuracy, loss values and time of the PyTorch dis-

tributed data parallel and model parallel module in LeNet VGG16 and ResNet 

models respectively. PyTorch is a powerful deep learning framework but due to 

the expansion of the database size, it cannot load it all into memory at once. So, 

it divides large-scale data into small chunks, which are then processed simulta-

neously on multiple processors or computers, and finally the results are com-

bined. But this leads to a change in the model results. Therefore, it brings out the 

experiment as follow, n LeNet and VGG16 models, model parallel experiments 

with different numbers of GPUs were conducted on these both models, and about 

ResNet model in this paper, performed data parallelism experiments with differ-

ent number of GPUs. The findings revealed that, in the model parallel experi-

ments, the number of GPUs employed did not have a significant impact on the 

floating accuracy of the results. However, a slight variation in the accuracy of the 

output answers was observed among the LeNet models, with an overall average 

accuracy of 26.2%. In the data parallel experiment, it was observed that the run-

ning time increased with an increasing number of GPUs. Specifically, the running 

time using one GPU was measured at 265.173 seconds, while using five GPUs 

resulted in a running time of 347.273 seconds. These results suggest that the uti-

lization of multiple GPUs in data parallelism leads to an increase in operating 

time. 
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1 Introduction 

Deep Neural Networks (DNN) are artificial neural networks composed of multi-layer 

interconnected neurons. DNNs already have their applications in various field, ranging 

from image classification [1], question and answer systems [2], and cyber-security 3 

etc [3]. The pursuit of increased intelligence in many deep neural network (DNN) ap-

plications entails the utilization of larger datasets to optimize larger models, with the 

expectation of advancements in distributed training systems. Among existing solutions, 

distributed data parallel and model parallel are promising approach to train
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large DNNs with numerous layers on multiple GPUs, where the DNN is partitioned
into multiple stages, each containing a number of layers and running on a GPU.

In recent work about PyTorch distributed, Shen Li introduced the practical
experience of PyTorch distributed training [4], including the basic principles of
distributed training, the implementation of PyTorch distributed training, and
optimization techniques for distributed training. Che-Lun Hung introduces a parallel
algorithm based on CUDA for multiple sequence alignment on multiple GPUs [5].
Shinji Sakane presents a parallel computing method based on multiple GPUs for
simulating dendrite crystal growth under forced convection conditions [6]. Yakun
Huang proposes a new method for accelerating deep neural networks, called
Distributed Deep Learning (DDL), which enables data and model parallelization on
ubiquitous end devices [7].

About three basic models used in this paper. It can be found that in LeNet model,
the average pooling used in this model may lose some important feature information.
However, in VGG16 model, the use of max pooling may lose some detail information
which may influence the accuracy of results and the loss value during the operation
time. The last one is ResNet, which can train very deep neural network models. This
model has the drawback of having a high number of model parameters, which leads to
a requirement of more computing resources for both training and inference.
Additionally, the training speed of this model is slow, and it requires a significant
amount of computing resources and a long training time.

To address the limitations mentioned above, this study conducts a series of testing
experiments aimed at investigating the efficacy of model parallelism and data
parallelism on different neural network models. Specifically, the design,
implementation, and evaluation of model parallelism are presented using the LeNet
and VGG16 models, while data parallelism is explored using the ResNet model. In
LeNet model, the model parallel experiment was implemented to explore how the
different numbers of GPUs impact on the GPU footprint of LeNet models and the
accuracy of individual results. In VGG16 model, it applies the model parallel
experiment using two GPUs to investigate the effect of different number of GPUs on
loss values, computing time and accuracy of results. About ResNet model in this
paper, the data parallelism experiments with different type and different number of
GPUs were performed , in order to figure out the occupancy of each GPU in data
parallelism and loss values under the influence of different types of GPUs as well as
carrying out data parallel experiments with different numbers of GPUs in the same
type of GPU, model loss values and changes in occupancy of each GPU and recording
the model running time when using different numbers of GPUs.

For the first experiment the average accuracy of the models reached 26.2%, and
there is a slight difference in the accuracy of the answers output by these models.
About the occupancy rate of each GPU, the result shows that when it adds a new GPU
into the system, the new GPU will take up a lot of the work of the previous GPU, thus
making the previous GPU much less occupied. However, this phenomenon is
gradually reduced as the number of GPUs increases eventually reaching a relatively
balanced value. For the second experiment, 2% increase in output accuracy with two
GPUs compared to one GPU. This is not a great improvement. But about computing
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time, 15s reduction in computing time with two GPUs compared to one GPU. It
means that the different number of GPUs did not help more with the reduction in loss
values or the increase in accuracy. However, by splitting the model operations
between two GPUs, the pressure on a single GPU is reduced, and the two layers
increase to a shorter communication time than the original single GPU, resulting in
shorter operation times. In the last experiment, it can see that the better the GPU type,
the lower the GPU footprint required to run the model. However, the GPU type does
not have a significant effect on the loss value of the model. And the situation about
occupancy rate of each GPU in this model is just opposite from the first experiment.
The running time that using one GPU is 265.173s and using five GPUs are 347.273s.
Operating time increased with the quantity of GPUs.

2 Method

2.1 Dataset Description and Preprocessing

In this study, two datasets were employed, namely MINST and ImageNet. The
MNIST handwritten digit dataset contains 60,000 grayscale training images and
10,000 testing images, with 10-digit classes (0-9). The image data is converted to
floating-point numbers and normalized to between 0 and 1, the labels are converted to
one-hot encoding, and the image data is then converted to a 4D tensor in this study.

ImageNet contains over 1 million images with 1000 classes. The image size is 224
×224 pixels, and the image channel is RGB. In terms of data augmentation, VGG16
and ResNet use techniques such as random cropping, random scaling, and random
horizontal flipping to increase the robustness and generalization ability of the models.
The data is split into training and validation sets using the ImageDataGenerator class.

2.2 CNN Model

The first model is the LeNet model, which is based on the Convolutional Neural
Network (CNN) theory and is used for research in the field of image recognition.
LeNet was proposed by Yann LeCun et al. in 1998 and was the first successful deep
learning model applied to handwritten digit recognition [8]. It consists of
convolutional layers, pooling layers, and fully connected layers, where the
convolutional and pooling layers are used for feature extraction and the fully
connected layers are used for classification. LeNet is a milestone in the field of deep
learning and laid the foundation for later convolutional neural networks.

The second model is the VGG16 model, which was proposed by Karen Simonyan
and Andrew Zisserman in 2014 and is characterized by its deep architecture [9],
consisting of 16 convolutional layers which including 13 convolutional layers and 3
fully connected layers, and pooling layers. It uses small 3x3 filters with a stride of 1
and padding of 1.

The third model is the ResNet model, which was proposed by Kaiming He et al. in
2015 and is characterized by its residual blocks [10], which allow for the training of
very deep neural networks 10. The difference between the LeNet, VGG16 and ResNet
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is that ResNet introduced residual blocks into their model. Additionally, it used skip
connections to address information loss and gradient vanishing problems in deep
neural networks. It can train very deep neural network models.

2.3 Model Parallelism

Model parallelism is a parallel computing method in deep learning that divides a large
model into multiple small models and assigns them to different GPUs for processing.
Each GPU processes a different part of the model and then passes the results to the
next GPU for processing. When all GPUs complete their computations, their results
are collected and merged to obtain the final output. Model parallelism is suitable for
large models and can reduce the memory pressure on a single GPU. By dividing the
model into multiple small models, each GPU only needs to process a portion of the
model, reducing the amount of model parameters and gradients that need to be stored
on a single GPU. Additionally, model parallelism can increase GPU utilization
because while one GPU is computing, other GPUs can process other parts of the
model.

2.4 Data Parallelism

Data parallelism is a parallel computing method in deep learning that divides a large
dataset into multiple small batches and assigns them to different GPUs for processing.
Each GPU uses the same model parameters but processes different data. When all
GPUs complete their computations, their results are collected and merged to update
the model parameters. Data parallelism is suitable for large datasets and can speed up
the training process. By dividing the dataset into multiple small batches, each GPU
only needs to process a portion of the data, reducing the memory pressure on a single
GPU. Additionally, data parallelism can increase GPU utilization because while one
GPU is computing, other GPUs can process other batches of data.

2.5 Implementation Details

In this study, the three models employed possess distinct configurations and training
settings. For the LeNet model, the Adam optimizer is utilized along with a cross-
entropy loss function. The model's learning rate is set to 0.001, and a batch size of 64
is employed. The evaluation metric employed is accuracy, and the model is trained
using an RTX 2080 Ti GPU. Moving on to the VGG16 model, it utilizes the
Stochastic Gradient Descent (SGD) optimizer and cross-entropy loss function. The
learning rate for VGG16 is set to 0.01, and a batch size of 32 is used. Similar to
LeNet, accuracy is employed as the evaluation metric, and the model is trained using
an RTX 2080 Ti GPU. As for the ResNet model, it employs the Adam optimizer and
the same cross-entropy loss function and learning rate as LeNet. However, ResNet
differs in terms of batch size, which is set to 128. Similar to the previous models,
accuracy serves as the evaluation metric, and the model is trained using both RTX
3090 and RTX 2080 Ti GPUs. The utilization of multiple GPUs allows for
investigating the impact of data parallelism when varying the number of GPUs from 5
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to 2, with the GPU occupation rate being compared, and the lower occupancy rate
selected for analysis.

3 Experiment Results and Discussion

3.1 Model Parallelism in LeNet

Fig. 1 demonstrates the accuracy and occupancy of each GPU of LeNet model when
using 1 to 5 GPUs respectively. Looking at the line part in Fig. 1, it is evident that the
accuracy rates fluctuated when using different numbers of GPUs. Notably, the highest
accuracy rate of approximately 28% is observed when employing three GPUs.
Conversely, a gradual decline in accuracy is observed as the number of GPUs
increases from 1 to 2, reaching a nadir of 22% with the use of 2 GPUs. Subsequently,
the accuracy levels display an upward trend, ultimately stabilizing at 27% when 4 or 5
GPUs are employed. In terms of the bar chart, it is clear that the occupancy of
individual GPUs is highly dependent on the number of GPUs used. The highest
occupation of GPU was recorded when using one GPU, at about 9% in one GPU. The
average GPU footprint is gradually decreasing across different amounts of GPU
usage, reaching the lowest point of 2.4% when using 5 GPUs.

Fig. 1. The accuracy and occupancy of each GPU based on LeNet model (Photo/Picture credit:
Original).

From the results in Fig. 1, it can be found that LeNet achieved the lowest accuracy
when using two GPUs, while the accuracy is higher when using 1, 3, 4, or 5 GPUs. In
this experiment, the accuracy of LeNet is influenced by various factors. When using
two GPUs, the accuracy may be lower due to uneven data partitioning, increased
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communication overhead, and potential asynchronous parameter updates: 1) the data
partitioning may not be evenly distributed, resulting in some GPUs having less data
while others have more; 2) the frequency of data transfer and synchronization
operations increases, leading to increased communication overhead; 3) the
synchronization of parameter updates can be more complex, potentially leading to
asynchronous updates. However, when using 3, 4, or 5 GPUs, these issues can be
mitigated by more balanced data partitioning, reduced communication overhead, and
improved parameter synchronization. Additionally, when using 1 GPU, the accuracy
may be higher due to simplified data partitioning, reduced communication overhead,
and elimination of asynchronous parameter updates. It is important to consider these
factors and optimize the number of GPUs to achieve the best accuracy in model
parallelism experiments.

Fig. 2. The accuracy of each output in MNIST (Photo/Picture credit: Original).

The bar chart in Fig. 2. provides information about the accuracy of each output in
MNIST trained by the LeNet model. Overall, it is clear that the accuracy of the results
of the trained dataset is not strongly dependent on the number of GPUs used.

When training the LeNet model with different numbers of GPUs, the accuracy of
individual results can exhibit variability due to several contributing factors. These
factors include the disparate handling of data and computation by distinct GPUs,
resulting in discrepancies in the computed outcomes. Additionally, the
synchronization of updates and the randomness in the training process can also affect
the accuracy of individual results. For example, synchronous updates may introduce
inconsistencies as some GPUs may need to wait for others to finish computations.
Moreover, the inherent randomness in deep learning can lead to different results
across different GPUs. Therefore, it is important to be aware that the accuracy of
individual results may differ when training the LeNet model with different numbers
of GPUs.
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3.2 Model Parallelism in VGG16

The variation of the model loss rate during the training process is shown in Fig. 3, it is
evident that the loss values in this model experienced fluctuations decline during the
training time not only when using one GPU nor using two GPUs.

Fig. 3. The loss curve during the training process (Photo/Picture credit: Original).

When training a VGG16 model on ImageNet, the use of one GPU versus two
GPUs can result in significant differences in the loss values during the later stages of
training. This can be attributed to several factors. Initially, during the early stages of
training, the loss values may be similar regardless of the number of GPUs used due to
the random initialization of model parameters and the limited learning from the
dataset. However, as training progresses, the computational power and data
parallelism offered by multiple GPUs can accelerate the training process, leading to
faster convergence and potentially lower loss values. Additionally, the
synchronization of updates and the inherent randomness in the training process can
introduce variations in the loss values between different GPUs.

3.3 Data Parallelism in ResNet

Fig. 4 and Fig. 5 provide information about the different GPU occupations and
losses incurred when running the ResNet model with 2080ti and 3090.
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Fig. 4. The occupation of different number of GPU when using 2080ti and 3090 (Photo/Picture
credit: Original).

Fig. 5. The loss curve using 2080ti and 3090 during training process (Photo/Picture credit:
Original).

In Fig. 4, it is evident that the occupation rates fluctuated when using different
numbers of GPUs in different types of GPU. The lowest occupation rate occurred
when using two GPUs, with about 10% using 2080ti and 5% using 3090. From using
single GPU to two GPUs, there was a gradual decrease in occupation rate, reaching
the lowest point when using two GPUs. After that, the accuracy levels started to rise
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again, eventually reaching a stable 11% using 3090 and 13% using 2080ti with the
prerequisite of using five GPUs. The GPU usage with the 3090 is always less than the
GPU usage with the 2080ti. Fig. 5 shows the loss values generated when training the
ResNet model using 3090 and 2080ti respectively. The loss values for both GPUs
steadily decrease throughout the training process, from 2.038 at the beginning to
0.695 at the end, and the loss values for both GPUs remain essentially the same
throughout the training process.

It can be observed that the loss values of the model do not depend much on the
type of GPU, and as the overall GPU occupancy was lower on all 3090 GPUs than
with the 2080ti, so the subsequent experiments were conducted on the 3090 model
GPU.

Fig. 6. The loss curve of using different number of GPU during training process (Photo/Picture
credit: Original).
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Fig. 7. The occupation in each GPU (Photo/Picture credit: Original).

Fig. 6. consists of 4 lines of different colors, which represent 4 different loss values
when using different number of GPUs. As the training process continues, the loss
value of the model decreases, in the case of the ResNet model, the experiments with
different numbers of GPUs produce essentially the same loss value at the beginning,
but there is a slight difference in the loss value as the training progresses, with two
GPUs giving the smallest loss value and five GPUs giving the highest loss value
compared to other numbers of GPUs.

With the same model of GPU but with different numbers of cards (Fig. 7.), it can
be seen that the second GPU still has the lowest occupancy for each GPU, and the
overall GPU occupancy is concave, i.e. low in the middle and high at the ends.
However, it is worth noting that the GPU occupancy is relatively balanced across the
three cards when the data is parallelized across all three cards. It can also be seen that
the number of cards does not have a significant effect on the loss value, but as the
number of cards decreases it still reduces the loss value by a certain amount.
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Fig. 8. The running time when using different numbers of GPUs (Photo/Picture credit:
Original).

Fig. 8. shows the relationship between GPU and computing time for 2, 3, 4 and 5
cards respectively. It can be seen that as the number of GPUs increases, so does the
computing time of the model due to the increase in communication overhead between
layers.

4 Conclusion

In this work, it aimed to investigate the efficacy of model parallelism and data
parallelism on different neural network models. The methods employed in this study
included model parallelism and data parallelism. The findings in this research are that
the variation in the accuracy of the model is mainly influenced by the model
framework and the variation in the settings of the model parameters. The type and
number of GPU's does not have a significant impact on the accuracy of the model, but
as the number of GPU's increases the run time of the model will increase. These
findings contribute significantly to the impact of the type and number of GPUs used
on the accuracy, loss value and running time of distributed algorithms. However, it is
important to acknowledge the limitations of this study, such as the model parameters
are fixed values and do not include multiple influences in the comparison. Future
research should focus on testing the impact of model parameter settings on model
accuracy and loss values such as changing the learning rate or batch size to explore
their impact.
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