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Abstract. Algorithms designed for quantum computing, such as Harrow-Hassi-

dim-Lloyd (HHL), have shown significant potential in solving linear equations, 

with the possibility of achieving exponential acceleration. However, there are 

still several areas that need to be further developed and improved. One of the 

critical challenges is converting classical data into quantum data, a process that 

is integral to the functioning of quantum computing algorithms. This transfor-

mation is often a computationally expensive process, which, if not addressed, 

could significantly limit the efficiency of quantum computing. Another important 

area requiring improvement involves the precision of quantum phase estimation 

(QPE) and amplitude amplification. These processes are vital for the successful 

execution of quantum algorithms, yet maintaining a high level of accuracy in a 

quantum environment remains a complex issue. Also, the concept of Quantum 

Random Access Memory (QRAM) for temporary data storage poses another 

challenge. While QRAM can theoretically enable efficient access to quantum 

data, it may lead to the failure of exponential acceleration in certain circum-

stances, posing a significant limitation to quantum computing algorithms. It is 

worth noting that the Harrow-Hassidim-Lloyd algorithm's output does not corre-

spond to the solutions found through classical computations. This discrepancy 

represents another hurdle in utilizing the HHL algorithm for practical applica-

tions. Despite these challenges, Quantum Linear Systems Algorithms (QLSA), 

an emerging field in quantum computing, shows promise. It's still in the devel-

opmental stages but is already being tested and implemented in certain fields like 

machine learning and optimization. Despite the limitations of the current quan-

tum computing systems, their potential to revolutionize these fields is indeed ex-

citing. 
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1 Introduction 

Solving systems of linear equations is a standard problem across mathematics, science, 

and engineering. The classical methods used to solve these systems fall broadly into 

two categories: direct and iterative methods [1]. The computational complexity of
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these methods often depends on the types of problems they address and the
dimensionality of the variables involved. A comparison of these algorithms provides
insight into their complexity. As shown in Table 1.

However, many modern computational tasks involve linear systems of
extraordinary scale, with complexities within the order of 10^6. Classic algorithms
such as lower-upper (LU) decomposition and Cholesky decomposition can be
employed to tackle these problems on classical computers, but the computational
burden remains substantial, leading to significant costs [2].

Table 1. Computational Complexity of Various Direct and Iterative Methods for Solving
Linear Equations

Direct Methods

Gaussian Elimination O(n3)

LU Decomposition O(n2)

Cholesky Decomposition O(n2)

Iterative Methods Conjugate Gradient O(n)
Jacobi Method O(n)

Physicist Richard Feynman hypothesized that classical computers would struggle
to simulate the quantum states encountered in physics, which include properties such
as superposition and entanglement. To further the development of physics and enable
the simulation of genuine superposition, entanglement, and their inherent randomness,
Feynman proposed the development of a machine grounded in quantum mechanics
theory. This proposition gave rise to new computational paradigms and injected new
life into the field of computing [3]. In 1994, Peter Shor of Bell Laboratories published
a quantum algorithm for factoring integers which could run in time Ο(( ���� )3) [3].
However, its counterpart in classic, the general number field sieve, runs in time
��� (Ο(( ���� )

1
3( ������� )

2
3)) , the significant improvement in computing speed would

invalid the security of Rivest–Shamir–Adleman (RSA) cryptography, one of the
widely used public-key cryptosystem for secure data transmission. In 2009, Harrow,
Hassidim and Lloyd published their HHL algorithm, for solving the linear system
problem on quantum machine, the problem could generally represented by �� = �.

It provides a more efficient mode for many traditional algorithms that involve
solving linear equations and require a lot of computation, such as optimization, linear
differential equations and machine learning. The superposition state and entanglement
of quantum make them react immediately no matter how far away they are. Using this
property, the qubits can represent 0 or 1 or 0 and 1 at the same time, and more
complex superposition states can be created through the entanglement properties, by
then the qubits would become interlinked, and no matter where they are, if one qubit
change the state, the correspond qubit would be affected at once. the calculation speed
of Quantum computer will greatly surpass that of classical computer under specific
rules [4].

For quantum computing, the key points are quantum gates, quantum circuits, and
algorithms. Quantum gates are basic operations that act on a small number of
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quantum bits, usually represented by a 2n * 2n Unitary matrix. For example, the
Hadamard gate is used to create superposition states, and controlled-NOT (CNOT)
gate can be used to create quantum entanglement. Quantum computing is to use the
circuit composed of these quantum gates to implement specific algorithms. For
example, the Shor algorithm can be used for factorization of large prime numbers,
while the Grover algorithm can be used for fast database retrieval, and the HHL
algorithm for solving linear systems of equations [5].

2 Relevant Theories

To solve quantum linear system equation � � = � , where A is Hermitian matrix
and b is a known vector. HHL is the core algorithm. Although the practice is not yet
perfect, it has been tried in many algorithms [6]. The HHL algorithm consists of the
following steps: Quantum state transformation of data, controlled rotation, and result
output, where A is Hermitian matrix and � is a known vector. A must be a
Hermitian matrix in order to convert it into a unitary operator. If A is not a Hermitian
matrix, the original problem can be transformed into:

0 �
�† 0

0
� = �

0 （1）

It uses QPE to estimate the eigenvalues of A, and finally uses quantum Fourier
transform to extract the required eigenvalues. It looks like performing eigenvalue
decomposition on A. When A is not a Hermitian matrix, a Hermitian matrix can be
constructed.

2.1 Overview of HHL algorithm

To solve the system of linear equations is given by � � = � , � = �=1
� �� ��� ,

apply matrix exponential ���� to A, where t = , the Hermitian matrix � =
�=1
� �� �� ��� , where �� is the ��ℎeigenvector of A with eigenvalue �� , and would

create unitary operator ���� , whose eigenvalue and eigenvector are the same as matrix
A. Then � should be projected to A: � = �=1

� �� ��� .
However, at this moment, the eigenvalue and eigenvector of matrix A is entangled

state: �=1
� �� �� � ��� , Apply inverse quantum Fourier transform after this to extract

eigenvalue to the amplitude. The goal is to get � = �−1 � = 1
� ��−1� �� �� .

After QPE, a set of controlled rotations are applied on an ancillary qubit, the angel
is � = ������ 1

�
, and it effectively creates a state proportional to the solution vector

|x⟩, but only if the right phase in the following step be measured [7]. a controlled
rotation would be applied to extract the eigenvalue �� �: �� � ≈ 2������ ( �

�� �
) , the

operation gate is ��� � − ��� �
��� � ��� � ,where � = ������ �

�� �
, then it come out with

1 − �2

�� �
2 0 + �

�� �
1 , �� ≥ � , where � is a certain constant. Now perform the inverse
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operation on all the above steps, including the inverse unitary operator and quantum
Fourier transform to obtain an approximate value of � ≈ �−1 � .

2.2 Overview of Quantum Random Access Memory (QRAM)

Classic Random Access Memory (RAM) is divided into DRAM (Dynamic RAM) and
SRAM (Static RAM). In DRAM, giving capacitor a high power frequency represents
1, while giving a capacitor a low power frequency represents 0. However, capacitors
are prone to leakage and require constant refresh and charging to maintain
information integrity. Therefore, DRAM is a type of memory that is prone to
information loss, which means it requires a constant current to maintain stored
information. Its structure is relatively simple and is usually used in computer memory
modules. SRAM, on the other hand, has no capacitors and a more complex structure
than DRAM. It can only store data when powered on, and disappears when powered
off. It is usually used for central processing unit (CPU) caching [8].

Its storage principle can be compared to DRAM address allocation with a Binary
tree structure. All data will be stored in the deepest layer of the Binary tree, that is, at
the leaf node. The deeper the depth, the larger the storage space, and the more data
can be stored. For example, for a Binary tree with a depth of 3, by drawing a Binary
tree diagram, the left side is 0, the right side is 1, and its third address should be
expressed as 010, and the seventh address should be expressed as 110.

QRAM is a device that has not yet been manufactured. Its purpose is to realize the
function of temporary storage of data in classical RAM. However, in quantum
computing, QRAM is used to store Quantum state. Enter the Quantum state of an
address first, and RAM will return the address and the entangled state of the data
stored at the address. The address can be the superposition state of multiple addresses.
The significance of QRAM is that it is necessary for many quantum algorithms. For
example, Quantum state need to be prepared in HHL, and the final results need to be
stored in QRAM.

2.3 State Preparation in Quantum Systems

In the analysis of classical data, data preprocessing is a very important step. It is
necessary to transform the data into a form that can be adapted by the model.
Similarly, on a Quantum computer, classical data also needs to be converted into a
Quantum state before calculation can be carried out. Moreover, whether the step of
preparing quantum is efficient determines whether the acceleration of quantum
computing is meaningful. It includes initial Quantum state preparation, Hamiltonian
simulation, and Quantum Fourier transform.

The first step is to initialize the circuit with certain quantum states. There are two
registers, the first register is the control register, prepare n 0 states as the initial
configuration, and the second register is the target register, prepare the Unitary which
already got, whose eigenvector is � , the � here is just a mark, the QPE is to
estimate it. After this, perform n Hadamard gates on each of the 0 qubits on the first
register, convert them into superposition states. The next step is to perform controlled
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Unit operations, the unitary matrix is the unitary operator, the QPE step is going to
find its eigenvalue and its power's eigenvalue The power depends on the position of
the control register. Afterwards, applying inverse Fourier transform, quantum Fourier
transform separates information related to eigenvalues and makes them readable.
Finally, the obtained phase is measured to obtain an estimate of the eigenvalues of the
eigenvector � of the unitary operator �. Quantum Fourier transform is an essential
part of QPE, which simulates classical Fourier transform into quantum computation
and acts on qubits. The quantum Fourier transform maps � = �=0

�−1 �� �� to
�=0
�−1 �� �� according to�� =

1
� �=0

�−1 ������� , � = 0,1,2, . . . , � − 1, and its inverse is
�� =

1
� �=0

�−1 ����−��� , � = 0,1,2, . . . , � − 1, it also can be expressed as: � ↦
1
� �=0

�−1���� �� .

3 Applications

3.1 Role of QLSA in Optimization Problems

Optimization problems are very common in today's society, such as finding the
maximum return or the minimum error of return in financial investment
Combinatorial optimization, or finding the optimal warehouse location and the
optimal transportation route in commercial supply chain management. Their goal is to
find the maximum or minimum value under given constraints. With the increasing
demand and constraints, the calculation time is greatly extended, and the calculation
cost also increases. However, their essence or the core part of calculation is to solve
System of linear equations, but under many constraints, the amount and cost of
calculation will be huge, and the calculation time will become long. However, with
the help of Quantum computer, the computing speed will increase exponentially in
theory, making it possible to solve the problem of large dimensions [9].

3.2 Application of QLSA in Quantum Machine Learning (QML)

In QSVM’s classical counterpart, the problem could be mathematically formulated by
[10]:

��� 1
2
� 2

2 + � �=1
� ���

�. �. ��(���� − �) ≥ 1 − ���� ≥ 0 (2)

� = 1,2, ⋯, �

It is essentially a quadratic programming, so after preparing the Quantum state, you
can use a Quantum computer to solve it. Quantum Principal Component Analysis
(QPCA): In essence, classical principal component analysis is the calculation of
matrix, calculating the covariance matrix of the matrix, and finding its eigenvalue.
These are all Linear algebra problems, which can be theoretically done with the
quantum linear system equation [11]. Quantum Linear Regression (QRegression):
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Classical linear regression can be transformed into solving System of linear equations.
Assuming that the original problem is that the factor data is A and the target data is b,
then the problem can be transformed into

���� = ��� （3）

4 Conclusion

QRAM is essential to quantum computing, and is still in the theoretical stage,
regardless of the architectural model in use. For instance, the Bucket brigade
architecture, while theoretically sound, is practically challenging to implement due to
its deep circuitry. This complexity implies that the actual circuit would be intricate
and possibly unmanageable [12].
Quantum states are inherently delicate and prone to instability, making them

susceptible to errors and demanding in terms of environmental requirements. During
actual computation, the register needs to be entangled with the newly generated
temporary value. Complex computations entail a high degree of superposition
entanglement, rendering the quantum state increasingly unstable. Consequently,
extracting desired results and effectively accessing data becomes increasingly
challenging.
Moreover, quantum computing inherently exhibits noise, further exacerbating the

challenge of noise reduction. Although quantum computing can theoretically offer
exponential acceleration, it hinges on the data being efficiently prepared into a
quantum state. Practically, the preparation of a quantum state could demand
substantial computational resources. If the quantum state preparation process is
sluggish, the algorithm's exponential acceleration becomes insignificant. The HHL
algorithm demands that matrix A be a sparse matrix, which is not always feasible in
reality, even though a sparse matrix can be constructed. The HHL algorithm's
complexity relates to the condition number of matrix A, used to determine whether
the matrix is ill-conditioned. If the condition number is large, exponential acceleration
is ineffective. The HHL algorithm's final output is not |x⟩, but a quantum state of
⟨x|M|x⟩, where M is some operator. Therefore, additional steps are needed to extract
and analyze the information in it. Furthermore, the accuracy of actual calculations is
compromised by noise, which implies that accurate results cannot be guaranteed and
extensive efforts may be needed to calibrate errors. In machine learning, nonlinear
activation functions such as Rectified Linear Unit and sigmoid are crucial to neural
network training. However, the quantum linear system algorithm solves linear
equations, making the classical nonlinear activation functions unsuitable for quantum
computing. Therefore, these functions necessitate further research to discover a
version that fits quantum computing.
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Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
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