)

Check for
updates

Investigation of Parallel and Hyperparameters Strategy on

Performance of Image Classification Training

Yannan Cao' *, Weiran Shen?
bl

! Software Engineering, Dalian University of Technology, Shenyang, 116081, China
2 Software Engineering, Beijing University of Technology, Beijing, 100124, China

*nataschal203@mail.dlut.edu.cn

Abstract. Convolutional Neural Networks (CNNs) have witnessed widespread adoption
in the domain of image classification, while deep neural networks have been developed to
tackle more intricate tasks. In the experimental investigation, a remarkable downward trend
in GPU utilization was observed as the batch size of the LeNet model was increased,
regardless of the parallel or non-parallel mechanism employed. The research findings
establish that this phenomenon can be ascribed to a constraint in data loading speed, which
in turn diminishes the efficiency of training when dealing with larger batch sizes, ultimately
resulting in reduced GPU utilization. To mitigate this issue, the data loading thread are
enhanced by adjusting the "num worker" parameter in the dataloader, thereby
investigating its impact on GPU utilization. Moreover, a series of comprehensive
experiments are conducted to ascertain the appropriate learning rates required for
maintaining satisfactory classification accuracy when utilizing large batch sizes. This paper
contributes to the field in two primary ways. Firstly, it identifies the cause of decreased
GPU utilization when the batch size is increased and proposes a solution to enhance
efficiency. Secondly, it verifies the adjustment of learning rates when adopting large batch

sizes to achieve comparable loss curves and classification accuracies.

Keywords: Convolutional Neural Networks, Image classification, GPU utilization, Data

parallel

1 Introduction

In recent years, Convolutional Neural Networks (CNNs) have gained widespread adoption for
image classification. The common CNN network includes LeNet [1], VGG [2], ResNet [3], etc.
Notably, VGG and ResNet have achieved higher classification accuracy by virtue of their deeper
architectures.

To deploy DNNs to multiple devices, numerous parallel mechanisms can be considered. To

be more specific, data parallel replicate the model on multiple devices with each device

© The Author(s) 2023

P. Kar et al. (eds.), Proceedings of the 2023 International Conference on Image, Algorithms and Artificial
Intelligence (ICIAAI 2023), Advances in Computer Science Research 108,
https://doi.org/10.2991/978-94-6463-300-9_105

mailto:natascha1203@mail.dlut.edu.cn
https://doi.org/10.2991/978-94-6463-300-9_105
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-300-9_105&domain=pdf

Investigation of Parallel and Hyperparameters Strategy 1047

receives different training data [4]. Model parallel split the network onto multiple devices to
deploy larger models [5]. Evaluation of these mechanisms is based on three key factors
including training time, GPU utilization and accuracy.

In addition to the strategic aspects of model development, hyperparameters such as batch
size also have significant influence on GPU utilization and training time. A larger batch size
can potentially lead to increased GPU utilization but simply augmenting the batch size to
maximize GPU usage may adversely impact training accuracy. To address this challenge,
adjusting the learning rate can yield improved performance. Related study has indicated
there is some relationship between batch size and learning rate. Smith et al. [6] proposed the
"Super-Convergence" approach, which involves using very large learning rates with small
batch sizes to achieve state-of-the-art results on image classification tasks. In addition, Goyal P
proposed Liner Scaling rule which indicate that batch size and learning rate should be
Proportionally increased to reach a similar accuracy [7].

In this work, several parallel mechanisms are implemented and hyperparameters including
batch size, epoch, device number are adjusted to investigate the change of the models’
performance. During these experiments, result indicate that the GPU utilization decrease when
adapting a larger batch size in both data parallel, model parallel and nonparallel strategy
adopting Lenet, this anomalous phenomenon did not happen when experiment with VGG and
Resnet. To further analysis this phenomenon, the speed of data loading is changed by alter the
child process number of dataloader, the result shows that when improve thread number from 2
to 5, the GPU utilization become positive correlation with batch size, indicating it is the data
prepare speed that limit the GPU utilization. Furthermore, an explanation for the observed
data-loading restriction exclusively affecting the LeNet model is provided by monitoring the
percentage of data loading time. This is due to the fact that LeNet finish it forward, backward
and optimizing at a shorter time compared to deep neural network like VGG so it requires a
faster data loading speed to fit with its faster training or it will be a drawback for training
efficiency. When it comes to network with training time, it can overlap the data loading time
thus the tread number no longer limit GPU utilization.

Following the identification of the underlying cause, the learning rate is adjusted to obtain
higher accuracy when training in larger batches in subsequent experiments. Typically, accuracy
decreases as batch size increases due to fewer iterations. Therefore, larger learning rates are
adopteds to fit larger batch sizes and record the loss curve for training. The results
demonstrated that a similar loss curve can be observed when following the "pad rule" (i.e.,

scaling the learning rate and batch size proportionally).

2 Method

2.1 Dataset Description and Preprocessing

The model is trained with CIFAR10 [8]. The dataset contains 60,000 RGB images from 10

1048 Y. Cao and W. Shen

different categories, each with 6,000 images, of which 50,000 are used as the training set and
10,000 for the test set. The images in the dataset are 32x32 pixels in size and are divided into
the following 10 categories. The data augmentation including the rotation, scaling, panning
and colour changes was employed based on the dataset.

2.2 Deep Learning Model

Several CNNs are adopted for the experiments including LeNet, VGG and Resnet. More

detailed information about them can be found as follows.

Convolutional Neural Networks. CNNs are a class of deep neural networks that are
commonly used for image classification and computer vision tasks [9, 10]. A typical CNN
consists of multiple convolutional layers, followed by pooling layers, fully connected layers,
and sometimes normalization layers. Commonly used CNN architectures include LeNet,
AlexNet, VGG, Resnet etc. These architectures differ in their depth, filter sizes, activation
functions, regularization techniques, and other design choices. In the experiment, LeNet, VGG
and Resnet are implemented. Input of the net is a batch of picture with size 32x32 and channel
3 while the fully connected layer includes 10 neurons representing for ten diverse classes.

2.3 GPU-based Parallel

Parallel mechanisms are widely used to improve the efficiency of deep learning training. In the
experiment, data parallel and model parallel are implemented. The detailed introduction of the

two-parallelism strategy can be found as follows.

Data Parallel. Data parallelism is achieved by replicating the neural network across multiple
devices, with each copy of the network processing a different subset of the data. The data is

typically divided into equal-sized batches, with each batch assigned to a different device.

Model Parallel. Model parallelism is achieved by splitting the model into smaller sub-models,
which are assigned to various devices. During training, each device computes the forward and
backward passes for its assigned sub-model, using the activations from neighboring devices as
inputs. The gradients are then accumulated across all devices, and the model parameters are
updated based on the combined gradients.

2.4 Implementation Details

The experiments are carried out with Pytorch framework using device 2080Ti and 3080Ti.
Cross-entropy is adopted cross-entropy as loss function which can be expresses as the formula

below:

1
L= F ?]=1 (_ (c::l yiclog (plc)) (1)

Investigation of Parallel and Hyperparameters Strategy 1049

’

N:samplesize, C:numberofclasses y,.: probability that the true label of the ith sample
belongs to the cth category, p;. : the predicted probability that the model belongs to the cth
category for the ith sample.
The evaluation metric is classification accuracy which is the rate of correct classification on
test sample.Typically, The ratio of training set to test set is 5 to 1.
In preliminary tests, LeNet, VGG and ResNet are adapted in data parallel and model
parallel mechanism. Hyperparameter such as learning rate, batch sizes and device number are
adjusted to investigate the change of model performance including classification accuracy and
GPU utilization. Noteworthy, uncommon downward trend of GPU utilization was observed
when increasing batch size of LeNet (i.e., 32,64,128,256) in both parallel mechanism (i.e., data
and model, using 2 cards) and nonparallel mechanism whereas VGG and Resnet show
common upward trend.
To further analysis this anomaly, the data loading processes is altered by setting the
parameter num_worker. In Pytorch, dataloader is rebuilt at the beginning of every epoch to
load batch data from disk to memory. Typically, the num workers parameter specifies the
number of child processes to be used for data loading. A larger worker number can result in
faster data loading speed as more data will be loaded at a time, which can avoid reloading data
during an epoch. Further, the perfecting strategy allows workers to load data required in
following epochs in advance thereby saving time consuming for subsequent epochs. The
following is a specific description of the experiments.
® Training was conducted with different numbers of workers (2, 4, 8, and 16) using the
Lenet model. The batch size was multiplied from 8 to 256 in order to investigate GPU
utilization.

® The total data loading time of the Lenet and VGG models was recorded, and the data
loading time was calculated as a percentage of the total training time. The proportion
indicates the influence of data loading efficiency on training efficiency which is positive
correlation with GPU utilization.

® In order to obtain better accuracy for large batch sizes, learning rate is adjusted
respectively under differently batch size. In detail, learning rate (i.e.,
0.001,0.002,0.004,0.008) and batch size (i.e., 32,64,128,256) are adopted.

3 Results and Discussion

3.1 Training Results of Different Parallel Modes

VGG16 and LeNet were compared in several sets of experiments in model parallel and data

parallel shown in Table 1.

1050 Y. Cao and W. Shen

Table 1. The training results under model parallel and data parallel about VGG16 and LeNet

Model GPU Type, Number (Parallel Epoch Lr Bs ACC Time GPU
Mode) Utilization
LeNet 2080Ti,1 20 0.001 64 60% 133.63 8%
LeNet 2080Ti, 2(model) 20 0.001 64 60% 115 6%, 4%
LeNet 3080Ti,1 10 0.001 64 53% 619 7%
LeNet 3080Ti,2(model) 10 0.001 64 52% 63.5 6%,2%
LeNet 3080Ti,2(data) 10 0.001 64 51% 663 7%, 6%
VGG 2080Ti,1 10 0.001 64 82% 127.38 90%
VGG 2080Ti,2(model) 10 0.001 64 82% 111.01 90%, 16%
VGG 2080Ti,2(data) 10 0.001 64 79% 173.76 69%, 61%

In data parallelism, the time increases significantly, due to the communication overhead

between the two GPUs. In the model parallelism, the LeNet convolutional layer is placed on

GPUO, and the fully connected layer is placed on GPU1. Training time is reduced without loss

of accuracy. Similarly, the same effect can be achieved by training the 13 convolutional layers

and 3 fully connected layers of VGG on 2 graphics cards.

In addition to the parallel approach, the influence of batch size on training in

hyperparameters is also crucial. As shown in Table 2 and Table 3, LeNet and VGG were

trained in two ways, data parallel and model parallelism, respectively. In all experiments, the

larger the batch size, the lower the accuracy and the shorter the training time.

Table 2. The results of training accuracy, test time, and GPU utilization under different batch sizes (data

parallel, 10 epochs, Ir_0.001)

Model (data parallel]) ~ Acc Time(s) GPU UtI(RTX3080ti)
LeNet/bs=32 60% 84.09 10%,8%
LeNet/bs=64 51% 66.35 7%,6%
LeNet/bs=128 45% 63.23 5%,4%
VGG/bs=32 81% 689.64 91%,85%
VGG/bs=64 79% 276.38 92%,85%
VGG/bs=128 77% 201.71 91%,87%

Investigation of Parallel and Hyperparameters Strategy 1051

Table 3. The results of training accuracy, test time, and GPU utilization under different batch sizes

(model parallel, 10 epochs, Ir_0.001)

Model (model parallel) Acc Time(s) GPU Utl
LeNet/bs=32 60% 69.69 7%,3%
LeNet/bs=64 52% 63.20 6%,2%
LeNet/bs=128 41% 58.48 4%,1%
VGG/bs=32 81% 142.17 79%,17%
VGG/bs=64 79% 94.51 92%,13%
VGG/bs=128 76% 79.31 93%,10%

Table 4 shows the training results of ResNet under different batch sizes. During ResNet
training, GPU utilization increases with batch size, and forward, backward, and optimize time
also increases slightly, and the accuracy decreases.

Table 4. The training results of ResNet under different batch sizes

Model Acc Time GPUutl(RTX3080ti) FBOtime
ResNet/bs=32/bn=1562 77% 101.46 46% 0.0044
ResNet/bs=64/bn=781 76% 65.70 58% 0.0044
ResNet/bs=128/bn=390 69% 58.18 68% 0.0055

When the batch size increases, the amount of data processed by the network at the same
time increases, which increases the GPU utilization, and the accuracy rate decreases slightly
due to the decrease in the number of iterations.

After completing the above experiments, some unconventional phenomena appeared in
these experimental data: (1) The larger the LeNet runtime batch size, the lower the GPU
utilization. When the batch size is between 8 and 256, the larger the batch size, the smaller the
GPU utilization, which defies the related rules. (2) Training with large batch sizes enhances
efficiency, but due to faster convergence associated with smaller batches that necessitate
complete traversal of training data for weight updates, the omission of full traversal in larger
batch sizes leads to diminished final accuracy.

3.2 LeNet GPU Utilization Training Abnormal Results

As shown in Table 5, from various parallel training experiments on VGG16 and ResNet
models, as the batch size increases, the utilization of the GPU will also increase. Changes in
GPU utilization are positively correlated with changes in batch size.

Table 5. The GPU utilization of VGG16 and ResNet under different batch sizes

GPU utl\Batch size 16 32 64 128

VGGI16 68% 78% 89% 92%
ResNet - 46% 58% 68%

1052 Y. Cao and W. Shen

Table 6 shows the change in GPU utilization when running LeNet on one and two
RTX3080 with different batch sizes. This set of data, whether it is single-card training or
parallel training of 2-card models, shows that as the batch size increases, the GPU utilization

gradually decreases. The downward trend in GPU utilization can be clearly seen in Fig. 1 and

Fig. 2.
Table 6. Changes of GPU utilization under different batch sizes under single GPU and two GPUs (Model
Parallel)
Batch Size 8 16 32 64 128 256
GPU Number 1 2 1 2 1 2 1 2 1 2 1 2
GPUutl (%) 11 85 10 95 10 74 7 62 5 41 4 41

Through subsequent experiments, the influence of hardware environment and some
hyperparameters on this abnormal phenomenon was eliminated one by one. This includes
factors such as graphics memory, bit width, frequency, epoch, learning rate, data format and
size. With the deepening of the experiment, the experimental method is set from the two
aspects of training method and the characteristics of the model itself. Fig. 3 and Fig. 4 show
the trend of GPU utilization with loss during VGG16 and LeNet training, respectively,

showing that there is no obvious correlation between the two.

1

12 10 10

10
S i
- 5
g 8 2
2 4
O

2

0

8 16 92 64 128 256

batch size

Fig. 1. The trend of GPU utilization under different batch sizes (Photo/Picture credit: Original).

Investigation of Parallel and Hyperparameters Strategy 1053

10

8

= B
k=]

D 4
S

2

0

8 16 32 64 128 256
batch size
e=@= gpu(=@= gpul

Fig. 2. The trend of utilization of two GPUs under different batch sizes (Photo/Picture credit: Original).

GPU utl (y) Hloss (x)

91%
90%
89%
88%
87%
86%
85%

GPU utl

18 14 1.2 0.930.880.84 0.66 0.63 0.49 0.37 0.27 0.22 0.15 0.08

loss

Fig. 3. VGG16 training process loss and GPU utilization relationship (Photo/Picture credit: Original).

10%
8% /W
6%

a%

2%

0%
23 22 21 2 19 18 17 16 16 14 13 12 11

GPU utl

loss

Fig. 4. LeNet training process loss and GPU utilization relationship (Photo/Picture credit: Original).

In this experiment, the method of varying the number of child processes for data loading

1054 Y. Cao and W. Shen

and preprocessing is used. It is better to set the quantity in a relatively large range, but not the
larger the better. Because the larger the number, although there are more threads, the
consumption of splitting to each thread is also large, so it will increase the load on the CPU,
thereby reducing the utilization of the GPU. If with the increase in the number of child
processes, that is, the more num_workers, the data preparation speed is accelerated, the time
the GPU waits for data is reduced, and the GPU utilization is positively correlated with the
change of batch size, it means that the GPU will have a lot of waiting time when training with
a larger batch size.

When the number of child processes is set to 2, 4, 8 and 16, the batch size of different sizes
changes, which can be found in Table 7.

Table 7. GPU utilization changes with batch size and num_workers

Num_workers\Batch 4 8 16 32 64 128 256
size
2 12% 1% 10% 10% 7% 5% 4%
4 - 12% 13% 15% 14% 10% 8%
8 - - 13% 15% 19% 21% 17%
16 - - - 15% 18% 23% 27%

The first line in Table 7 has the same parameters as the initial test results (Table 6), and a
numerical reference comparison with a batch size of 4 is added here. When the num_workers
is 2, GPU utilization still maintains a downward trend as the batch size increases. Especially
when the batch size is between 32 and 256, the num_workers is too small currently. Different
changes have occurred in the situation when num_workers are 4 showed on the second line in
Table 7. When the batch size is 8, 16, 32, the GPU utilization also increases. When the batch
size is 64, 128, 256, the situation is the same as the first line in Table 7. When the batch size of
the 4 child processes is above 64, the data preparation speed still limits the operation speed of
the GPU. The situation when num_ workers is 8 basically conforms to the law of GPU
utilization changing with batch size in other models. It also coincides with the situation
described in the second line in Table 7, where a num_workers that is too small will affect GPU
computing due to slow data transfer speed. The num workers of 16 is fully in line with
expectations.

As can be seen from Fig. 5, the overall trend of GPU occupancy at num_workers 2 and 4 is
still declining, especially when the batch size is large. When the num_workers is adjusted to a

larger 8 and 16, the data preparation rate finally no longer limits the operation rate of the GPU.

Investigation of Parallel and Hyperparameters Strategy 1055

GPU utl (%)

8 16 32 64 128 256
batch size

e=@=2 (num_workers) ==@==4 8 16

Fig. 5. Trend of GPU utilization increasing with the increase of batch size under different num_workers

(Photo/Picture credit: Original).

Although the blue and green parts in Fig. 6 have high GPU utilization, the batch size is
generally large enough to significantly affect the accuracy. The yellow and gray parts are the
more suitable intervals. Obviously, the loading, preprocessing, post-processing, etc. of data are
placed on the CPU, that is, other IO tasks of reading and writing. It is a good idea to adjust
GPU utilization by adjusting the number of num_workers. It is better to set the quantity in a
relatively large range (2-16), but not the larger the better. Because the larger the number,
although there are more threads, the consumption of splitting to each thread is also large, so it
will increase the load on the CPU, thereby reducing the utilization of the GPU. The number of

num_workers is generally used in conjunction with the number of batch sizes.

1056 Y. Cao and W. Shen

30

25

=
EE
=
5
10
| ‘
0
2 4 8 16

num_workers
256 m128 |64 32 ml6 m8

Fig. 6. Under the influence of num_workers and batch size, GPU utilization is in the right range

(Photo/Picture credit: Original).

For the diametrically opposed performance of VGG and LeNet in Batch Size increase, in
addition to the above effects, it is judged that LeNet is idle due to the increase in batch size
training data loading time, and VGG obviously takes longer to load data when bs increases,
but due to its long training time, the loading time is relatively low, and the overall GPU
utilization still shows an upward trend.

In the following experiment, percentage of dataloading time for LeNet, VGG are recorded

and GPU utilization is investigated.

Table 8. Data loading time proportion and GPU utilization of LeNet on different batch size(2080T1)

Batch size Num_worker Percentage_of dataloading time GPU utilization
32 0,2 80%,58% 5%,10%

64 0,2 87%,71% 4%,8%

128 0,2 91%,79% 4%,7%

256 0,2 93%,85% 3%,5%

Investigation of Parallel and Hyperparameters Strategy 1057

Table 9. Data loading time proportion and GPU utilization of VGG on different batch size(2080T1)

Batch size Num_worker Percentage of dataloading time GPU utilization
32 0,2 37%,8% 60%89%
64 0,2 46%,7% 52%,91%
128 0,2 49%,6% 48%,94%
256 0,2 53%,5% 45%,95%

Table 8 and Table 9 illustrate the percentage of data loading time and GPU utilization of
LeNet and VGG under various batch sizes and num_worker. Typically, when adapting to no
num_worker, both LeNet and VGG shows downward trend when increasing batch size.
However, when adapting two processes for loading data, GPU utilization of VGG becomes
positive correlation with batch size while LeNet still shows a downward trend.

It is noticed that percentage of dataloading time (PD) is negative correlation with GPU
utilization. Furthermore, when PD becomes lower, GPU utilization increases as enlarging
batch size. Specifically, large PD means considerable time has to be spent on waiting for
training data which can result in longer idle time, hence why it causes lower GPU utl. Both
data loading speed (decided by Num_ worker) and network passing time (i.e. time spent on
forward, backward and optimize) can impact PD. Further, smaller batch size and deep network
structure can cause longer data passing time, resulting in larger PD. VGG has larger PD than
Lenet because it includes many more layers.

3.3 Results of Improving Performance During Larger Batch Size Training

In general, the higher the GPU utilization during training, the higher the efficiency of training.
Therefore, when training parameters, it is more inclined to train under the condition of high
GPU utilization. However, in the above experiments, high GPU utilization is often generated
when the batch size is too high, such as 128, 256. Currently, the accuracy of the model tends to
be low and has no training value. In this experiment, it was decided to determine the change of
large-batch training performance by monitoring the change of loss during training and the

accuracy.

Table 10. Variation of accuracy of different batch sizes with learning rate under RTX2080 (LeNet, 20

epochs)
Batch size Learning Rate Accuracy Time
32 0.0005/0.001/0.002 60%/63%/64% 149/144/154
64 0.0005/0.001/0.002 52%/60%/63% 135/140/131
128 0.0005/0.001/0.002 43%/54%/60% 127/132/135

Table 10 shows how increasing the learning rate can maintain accuracy when increasing the

batch size. Stochastic gradient descent is continuous and uses minibatches, so it is not easy to

1058 Y. Cao and W. Shen

parallelize. Using a larger batch size allows for more parallel computation because the training
example can be split between different worker nodes. This, in turn, can significantly speed up
model training [11]. For further experimentation, batch size and epoch are added to the
parameters to find the optimal learning rate under different batch sizes.

By monitoring the changes and accuracy of loss during training, the change of large-batch
training performance is determined. When the batch size is 128 and 256, the change in

accuracy rate with learning rate is shown in Tables 11 and 12.

Table 11. Accuracy as a function of learning rate (batch_128, epoch_60)

Learning Rate 0.001 0.002 0.004 0.008

Accuracy 63% 62% 61% 57%

Table 12. Accuracy as a function of learning rate (batch_256, epoch_60)

Learning Rate 0.001 0.002 0.004 0.008

Accuracy 58% 62% 64% 60%

From Table 11 and Table 12, the optimal learning rate is about 0.001 when the batch size is
128, and the optimal learning rate is about 0.004 when the batch size is 256, which indicates
that the learning rate should be increased at the same time to achieve the optimal accuracy rate
when increasing the batch size.

When the batch size is 128 and 256, the downward trend of loss at different learning rates is
shown in Fig. 7. However, loss does not fully reflect the accuracy due to overfitting of the
learning of the training set. Therefore, it is necessary to further look at the training results with

minimum loss and accuracy.

0.225
— r_0.001

— 10002
Ir_0.004
— 1r.0.008

0.10 \

0 10 20 30 40 50 60
Epoch

0.200

0.175

0.150

Loss

0 10 20 30 40 50 60
Epoch

Fig. 7. The downward trend of loss at different learning rates at 128 (left) and 256 (right) for batch
size (Photo/Picture credit: Original).

Table 13 shows where loss converges at 60 epochs under different conditions. The numeric

Investigation of Parallel and Hyperparameters Strategy 1059
value of loss represents the distance between the model output and the real result. As can be
seen from the data in Table 13, the loss has converged very closely in the above four cases.

The trend can be seen more intuitively from Fig. 8.

Table 13. Minimum loss for different batch sizes and learning rate.

Batch, Ir 32,0.001 64,0.002 128,0.004 256,0.008
Min_loss 0.0285 0.0317 0.0311 0.0321
02251 — batch_32_Ir_0.001
—— batch_64_Ir_0.002
0.200 1 batch_128_Ir_0.004
—— batch_256_Ir_0.008
0.175 -
0.150 -
g 0.125 -
0.100 1
0.075
0.050 -
0.025 -
0 10 20 30 2 50 60
Epoch

Fig. 8. Declining trend of loss under different batch sizes and learning rates (Photo/Picture credit:

Original).

In fact, as shown in Table 14, adjusting the learning rate does eliminate most of the
performance gap between small and large batches. As epoch increases, the value of loss gets

closer and closer. The accuracy of large batch size training is also similar to that of small batch

size.
Table 14. Accuracy of different batch sizes and learning rate
Batch,Ir 32,0.001 64,0.002 128,0.004 256,0.008
Accuracy 60% 61% 61% 60%

When comparing large batches and small batches, generally default to the same epoch to
compare, so that the number of large batch training iterations will be less. At this time, if the
learning rate does not make any adjustments, the large batch trains fewer iterations, resulting
in a lower degree of fit, and the accuracy will be low. So, the learning rate needs to be adjusted,
a large batch contains more samples, avoiding the situation that small batches contain extreme
samples, and the variance is smaller. This means that the gradient direction calculated using a

large batch is more credible, so a larger learning rate can be used.

1060 Y. Cao and W. Shen

4 Conclusion

This research paper investigates the influence of batch size on GPU utilization during the
process of image classification using LeNet, VGG, and ResNet architectures. Additionally, the
optimal learning rate required for each architecture at different batch sizes was examined.
Multiple parallelism mechanisms were implemented, and their performances were evaluated.
The impact of device numbers on the efficiency of data parallelism was investigated. Through
the experimental exploration, a significant decline in GPU utilization is observed when
increasing the batch size of the LeNet model, irrespective of the employed parallel or
non-parallel mechanism. The objective of the experiments is to provide valuable insights into
the effects of batch size on GPU utilization efficiency and determine the optimal learning rate
for achieving improved accuracy in image classification using state-of-the-art CNNs.
Furthermore, a comprehensive comparison of the characteristics exhibited by various parallel

approaches, including data parallelism and model parallelism is conducted.

Acknowledgment
All the authors contributed equally and their names were listed in alphabetical order.

References

1. LeCun, Y., Bottou, L., Bengio, Y., et al.: Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11): 2278-2324 (1998).

2. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556 (2014).

3. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. Proceedings of the
IEEE conference on computer vision and pattern recognition, 770-778 (2016).

4. Hillis, W. D., Steele, J. G. L.: Data parallel algorithms. Communications of the ACM, 29(12):
1170-1183 (1986).

5. Gaunt, A. L., Johnson, M. A., Riechert, M., et al..: AMPNet: Asynchronous model-parallel training
for dynamic neural networks. arXiv preprint arXiv:1705.09786 (2017).

6. Smith, L. N., Topin, N.: Super-convergence: Very fast training of neural networks using large
learning rates. Artificial intelligence and machine learning for multi-domain operations applications.
SPIE, 11006: 369-386 (2019).

7. Goyal, P., Dollar, P., Girshick, R., et al.: Accurate, large minibatch sgd: Training imagenet in 1
hour. arXiv preprint arXiv:1706.02677 (2017).

8. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. (2009).

9. Keskar, N., et al.: On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
Minima. arXiv preprint arXiv:1609.04836 (2016).

10. Yu, Q., Wang, J., Jin, Z., et al.: Pose-guided matching based on deep learning for assessing quality
of action on rehabilitation training. Biomedical Signal Processing and Control, 72: 103323 (2022).

Investigation of Parallel and Hyperparameters Strategy 1061

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

http://creativecommons.org/licenses/by-nc/4.0/

	1Introduction
	2Method
	2.1Dataset Description and Preprocessing
	2.2Deep Learning Model
	Convolutional Neural Networks. CNNs are a class of

	2.3 GPU-based Parallel
	Data Parallel. Data parallelism is achieved by rep
	Model Parallel. Model parallelism is achieved by s

	2.4Implementation Details

	3Results and Discussion
	3.1Training Results of Different Parallel Modes
	3.2LeNet GPU Utilization Training Abnormal Results
	3.3Results of Improving Performance During Larger Bat

	4Conclusion
	AcknowledgmentAll the authors contributed equally
	References

