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Abstract. Road crack recognition and detection is one of the fundamental tasks 

in the fields of autonomous driving and intelligent transportation, which has 

attracted a lot of research interest in recent years. Thanks to the rapid 

development of Convolutional neural network, the accuracy of road crack 

recognition based on depth learning is continuously improved, while few of these 

methods focus on the complex road scenes. This research undertook a thorough 

accuracy analysis of the utilization of Convolutional Neural Networks (CNNs) 

in recognizing road cracks under complex road conditions. It meticulously 

examined the performance of CNNs, a sophisticated form of deep learning model, 

in identifying and differentiating road surface cracks in challenging 

circumstances, such as water-logged road surfaces, pedestrian interference, and 

the presence of shadows. The study scrutinized the capacity of CNNs to 

automatically extract and learn salient features from images, a pivotal aspect in 

the precise detection of road surface cracks. Moreover, the adaptability of CNNs 

to diverse and complex environments, their ability to comprehend intricate 

patterns essential for accurate crack recognition, and their robustness against 

fluctuating environmental conditions were put under rigorous evaluation. The 

research hence embodied an exhaustive exploration into the efficacy of CNNs in 

road crack detection under complex road conditions, illuminating both their 

potential strengths and areas requiring further enhancement. 
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1 Introduction

The rapid development of self-driving technology is ushering in a new era of

transportation. Road cracks, as a common form of road damage, significant impact on

driving safety and passenger comfort. Over the past few years, the development of

computer vision and machine learning technology has been applied to surface sensing

[1-6]. The extensive literature on crack detection and pavement damage clearly

indicates that this research field is becoming increasingly worthy of research [7-10].

Improving detection accuracy in complex road conditions is a key challenge in

research on the use of deep CNNs to detect road cracking. This study will analyze the

accuracy of crack detection results in complex scenarios and analyze the factors that

will impact the accuracy of the results.

Traditional road crack detection methods, such as those employing machine

learning techniques like Support Vector Machines (SVM) or boosting algorithms,

have demonstrated competent performance under standard or ideal road conditions.

These techniques involve a series of operations, such as image acquisition,

pre-processing, feature extraction, and classification. They can efficiently detect road

cracks when the conditions are favorable, such as when the road surface is clear,

there's sufficient lighting, and cracks are apparent and well-defined.

However, these traditional road crack detection methods may falter under more

complex road conditions. In these scenarios, the detection accuracy tends to drop

significantly. The complexity of these conditions could be attributed to a variety of

factors, some of which include obstructions by buildings, interference from

pedestrians, and complications introduced by stagnant water. These factors can

obscure the cracks or introduce noise into the data, leading to incorrect classifications

and lower detection rates.

Amid the limitations of traditional crack detection methods, deep learning

techniques have emerged as a promising alternative. Deep learning, and in particular,
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CNNs, have shown remarkable potential in the task of road crack recognition. These

methods stand out for their ability to automatically learn and extract useful features

from images, thus sidestepping the tedious and often error-prone task of manual

feature design and selection inherent in traditional methods.

CNNs, a class of deep learning models, use a series of convolutional, pooling, and

fully connected layers to process their inputs. They can identify local patterns in data,

making them well-suited for image analysis tasks such as crack detection. Their

ability to learn features at various levels of abstraction allows them to recognize

complex patterns that may be missed by other methods. CNNs can also accommodate

large-scale variations in lighting conditions and road surface debris, demonstrating

resilience and versatility in complex environments.

Further, the performance of deep learning methods tends to improve with the

amount of data available. As more data are fed into these models, they can learn more

nuanced patterns, enhancing their crack detection capabilities in diverse road

scenarios. They also showcase superior robustness against changing environmental

conditions, ensuring consistent detection accuracy even under adverse circumstances.

Crack detection is of particular importance to the field of autonomous driving.

Self-driving vehicles rely heavily on accurate, real-time data about their environment

to navigate safely. Hence, ensuring reliable detection of road cracks, even under

complex road conditions, is paramount. Inaccurate detection of road cracks may lead

to safety hazards and performance inefficiencies, underscoring the need for a deeper

analysis and exploration of detection methodologies under such challenging

circumstances.

While traditional road crack detection methods may be adequate under standard

road conditions, their performance may be insufficient under more complex scenarios.

Deep learning, with its ability to adapt to various conditions and learn intricate

patterns, provides a promising avenue for enhancing the reliability and accuracy of

road crack detection, thereby contributing significantly to the development of safer

and more efficient autonomous driving systems. Despite its promise, the application
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of deep learning in crack detection is still an active area of research, inviting further

exploration and development.

The study will conduct research based on the method of [6] and conduct in-depth

analysis and research on the image data under complex road conditions to explore the

reasons for the decline in accuracy. Have noticed that there may be negative

conditions such as buildings, pedestrians, and water accumulation in the images under

complex road conditions, which interfere with the visibility and accuracy of road

cracks. Therefore, the study will analyze these interference factors to improve the

accuracy of road crack detection in complex road conditions in the future.

2 Proposed method

Based on the method in [6], the collected data is classified, and it is judged whether

the test image is not a damaged road. To fix this issue, a convent is used in [6] to train

on a large number of road pictures.

2.1 Prepare training data

The data used for this study will be categorized into four distinct sections, each with

its unique set of complexities and challenges pertaining to road conditions. Each

category comprises images that provide an empirical base for the analysis of the

CNNs ability to recognize road cracks under different circumstances. In this rich

dataset, the range of complexities goes beyond merely differentiating cracked from

non-cracked surfaces, extending to intricate environmental factors that can

significantly influence the accuracy of road crack detection.

The first category is a collection of images representing highly complicated road

conditions. This dataset includes variables such as shadows, pedestrian interferences,

and stagnant waters on the roads. These images mimic the real-world scenarios where

multiple obstructions could simultaneously affect the visibility of road cracks. These

obstructions require an advanced level of feature extraction and learning from the

CNNs to ensure accurate crack recognition. Given the complexities, this category

poses the most significant challenge to the model's crack detection capabilities. The
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second category contains images of complex road conditions that include shadows

and ordinary road surfaces. The shadows could be cast by a variety of factors such as

buildings, trees, or other vehicles. The presence of shadows can create artificial

contrasts on the road surface, which can be misinterpreted as cracks. Hence, the

ability of the CNNs to distinguish between actual cracks and shadows is a crucial

measure of the model's effectiveness. Part three includes a collection of images that

feature complex road conditions with pedestrians and ordinary road surfaces. The

presence of pedestrians on roads introduces a dynamic element to the image analysis.

Pedestrians can obscure parts of the road surface, including potential cracks, making

it more challenging for the system to accurately detect and categorize road conditions.

This set tests the model's capability to perform under unpredictable and ever-changing

scenarios. The fourth category focuses on images of complex road conditions with

stagnant water and ordinary road surfaces. Stagnant water on the road can obscure the

view of potential cracks and disrupt the usual texture and color of the road surface.

The challenge here lies in the model's ability to accurately detect cracks underneath or

around water pools, an aspect that traditional crack detection methods often struggle

with.

Each image in these collections is 600 × 600 pixels in size, which provides a good

balance between detail and computational feasibility. With a substantial number of

images, as many as 300 for each category, the data set allows for robust training and

testing of the CNN model. A comprehensive analysis of these images not only

provides a more rounded understanding of the model's performance but also

contributes to the improvement and refinement of road crack detection systems.

Ultimately, this study aims to test the model's adaptability and accuracy across

varying complex road conditions. In doing so, it hopes to identify areas of strength

and potential improvements in the use of CNNs for road crack detection. This would

contribute to the overall goal of enhancing safety and efficiency in transportation

infrastructure, particularly in the context of emerging technologies such as

autonomous vehicles.
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2.2 Convolutional architecture

The architecture of ConvNet is shown in the Fig 1. Conv, mp, and fc represent

convolutional layer, maximum pooling layer, and fully connected layer, respectively.

Usually, ConvNet is considered a hierarchical feature extractor that extracts features

at different levels of abstraction and maps the original pixel strength of crack patches

into feature vectors through several fully connected layers. By using the

backpropagation method [7], all parameters are jointly optimized by minimizing

misclassification errors on the training set.

Fig. 1. Illustration of the architecture of the proposed ConvNet [6].

Based on the method in [6], Received a training kit S={a(i), b(i)}, which includes n

blocks of images, where a(i) is the i-th picture box and b(i) {0.1} is the corresponding

class label. If b(i)=1, then a(i) is a positive fix, otherwise a(i) is a negative fix. Let

zm
(i) take out the unit m in the last layer for a(i). Next, the likelihood that the b(i) label

of a(i) is m can be computed by:
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where k = 2, n is the total number of patches, and 1{ } is the indicating feature.
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3 Experimental results analysis

This analysis considers the experimental results of road crack detection in three

different scenarios, each representing a different road condition: shadow, ponding,

and pedestrian traffic. The methodology employed in this study was based on the [6]

method, which initially showed an accuracy of 89%. However, this accuracy reduced

when applied to more complex road conditions, as represented by the three scenarios.

3.1 Shadow

As shown in Table 1, the model was initially trained on shadow scenarios, with the

loss significantly reducing over six epochs, from 744.18 in the first to 0.68 in the final

epoch. This dramatic reduction indicates that the model was effectively learning and

adapting to the shadow conditions. The training accuracy increased modestly, from

73.48% in the first epoch to 91.86% in the last, revealing a similar trend. While the

validation loss and accuracy also showed improvements over time, the testing phase

revealed a loss of 0.6796 and a final accuracy of 80.43%. Despite the reduction in

accuracy, it should be noted that shadow conditions pose unique challenges due to the

potential obscuring of details and the introduction of artifacts, which the model seems

to have managed reasonably well.
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Table 1. Test results for shadow scene

type Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Epoch 6

tran-Loss 744.1800 40.9300 6.9300 0.7300 0.6800 0.6800

tran-Accuracy 0.7348 0.7557 0.9167 0.9167 0.9167 0.9186

Val_Loss 44.9760 6.8297 0.5047 0.6796 0.6772 0.6750

Val_Accuracy 0.9375 0.9375 0.9395 0.9395 0.9395 0.9395

test-res

loss 0.6796

accuracy 0.8043

Final

Accuracy
0.8043

Final Loss 0.6796

3.2 Ponding

As shown in Table 2, for ponding conditions, the training loss started from 689.54 and

sharply decreased to 0.59 by the sixth epoch, while the training accuracy fluctuated a

bit but ultimately increased to 93.11%. Validation loss and accuracy also showed an

overall improvement, ending at 0.45 and 97.01%, respectively.

However, during the testing phase, the model revealed a loss of 13.5528 and an

accuracy of 71.95%. These results indicate that the model might be struggling to

generalize in this scenario. Reflections and distortions introduced by water make

ponding conditions particularly challenging. Despite this, the model displayed

resilience by maintaining a relatively high level of accuracy.
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Table 2. Test results for ponding scene

type Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Epoch 6

tran-Loss 689.5400 103.5100 49.0700 7.4600 2.4000 0.5900

tran-Accuracy 0.8067 0.7822 0.9356 0.9111 0.9222 0.9311

Val_Loss 69.4500 84.7300 10.4100 2.1500 0.3800 0.4500

Val_Accuracy 0.9313 0.9313 0.9313 0.9433 0.9791 0.9701

test-res

loss 13.5528

accuracy 0.7195

Final Accuracy 0.7195

Final Loss 13.5528

3.3 Pedestrian

The final scenario considered was pedestrian traffic. As shown in Table 3, the initial

training loss was 577.79, decreasing to 2.09 in the sixth epoch. The training accuracy

showed a general increase, settling at 95% in the final epoch. This consistency

indicates the model's effective learning from the dataset.

Validation loss and accuracy also improved over the epochs, but the test results

revealed a loss of 3.7023 and a final accuracy of 87.25%. Pedestrian traffic introduces

variability and potential obstructions, which could account for these results.

Nevertheless, the model demonstrated a strong ability to detect cracks in this

challenging scenario.

In conclusion, this study has demonstrated that the effectiveness of the [6] method

varies under different, more complex road conditions. While the overall results are

promising, the drop in accuracy in the testing phase indicates a potential overfitting to

the training data or difficulty in generalizing to unseen data. Future research may

focus on addressing this disparity to enhance the model's robustness and applicability

across different road conditions.
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Table 3. Test results for Pedestrian scene

type Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Epoch 6

tran-Loss 577.7900 105.9900 42.3600 7.5400 5.2100 2.0900

tran-Accuracy 0.8167 0.7333 0.9472 0.9444 0.8528 0.9500

Val_Loss 41.7300 38.0000 8.3200 4.8400 3.3400 1.0000

Val_Accuracy 0.9728 0.9728 0.9728 0.9734 0.9728 0.9760

test-res

loss 3.7023

accuracy 0.8725

Final Accuracy 0.8725

Final Loss 3.7022

4 Discussion

The present study investigated the performance of road crack detection under

complex road conditions, including shadows, ponding, and pedestrian traffic. The

experimental findings shed light on the strengths and limitations of the road crack

detection model employed in this research.

The results reveal that the accuracy of the model varied across different road

conditions. The accuracy in the shadow condition was relatively stable, with a final

accuracy of 80.43%. Shadows pose challenges due to the obscuration of crack details

and the introduction of artifacts. Nonetheless, the model demonstrated a satisfactory

performance, indicating its capability to handle shadowed areas reasonably well.

The ponding condition presented significant challenges due to water-induced

reflections and distortions. As a result, the model's accuracy dropped to 71.95% in

this scenario. The detection of road cracks under ponding conditions remains a

complex task, requiring further improvements to overcome the challenges posed by

water reflections and distortions. Future research could explore advanced techniques

to mitigate these effects and improve detection accuracy in ponding scenarios.
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The model achieved the highest accuracy in the pedestrian condition, with a final

accuracy of 87.25%. However, there is still room for improvement, as the accuracy in

this condition did not reach the initial accuracy achieved with the [6] method. The

presence of moving objects and potential occlusions in pedestrian scenarios

introduces additional complexities that impact the detection accuracy. Further

investigations are warranted to enhance the model's performance in such challenging

conditions.

It is important to acknowledge the limitations of the study. The performance of the

road crack detection model was evaluated on a specific dataset, and the

generalizability to other datasets or real-world scenarios should be further examined.

Additionally, the model's training and testing data might not fully capture the wide

range of road crack variations encountered in practical situations. Collecting more

diverse and extensive datasets that encompass a variety of road conditions and crack

types would enhance the model's robustness and improve its performance in

real-world applications.

Furthermore, exploring different training strategies and hyperparameter

optimization techniques could yield better results. The choice of network architecture,

data augmentation methods, and regularization techniques could significantly impact

the model's performance. Fine-tuning these aspects could lead to enhanced detection

accuracy across all road conditions.

In conclusion, this study contributes to the understanding of road crack detection

under complex road conditions. The results highlight the potential and challenges of

the employed model in different scenarios. Further research should focus on refining

the model's performance, expanding the dataset to encompass a wider range of road

conditions, and investigating advanced techniques to improve detection accuracy in

challenging scenarios. These advancements can contribute to the development of

more robust and accurate road crack detection systems for efficient road maintenance

and infrastructure management.
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5 Conclusion

To conclude, this study extensively examined road crack detection under three

complex road scenarios: shadows, ponding, and pedestrian traffic. Valuable insights

were gained regarding the model's performance in varied environments. In the

shadow condition, the model demonstrated commendable learning and adaptability.

Even with the inherent challenges of obscured details and artifact introduction, the

model achieved a final accuracy of 80.43%, showing its robustness. The ponding

condition, despite presenting intricate difficulties due to water-induced reflections and

distortions, saw the model performing with a reasonably high accuracy of 71.95%.

Although lower compared to the shadow condition, it indicates the model's

generalization capability in such scenarios. The pedestrian condition posed unique

obstacles, like moving objects and potential occlusions, but the model navigated them

effectively, achieving the highest final accuracy of 87.25% among the three

conditions. While there was a decrease in accuracy under these complex road

conditions compared to the initial 89% accuracy using the original method, the

model's promising capabilities were still evident. These results emphasize the

potential for further model optimization for real-world conditions and underline the

importance of diverse, challenging scenario training for machine learning models.

This research provides a foundation for future work to enhance the adaptability of

road crack detection algorithms in real-world settings.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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