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Abstract. In recent years, adversarial learning has gradually attracted a lot of 

research interest, which aims to understand the attack behavior and design vari-

ous algorithms that can resist the attack. The design of adversarial learning algo-

rithms mostly revolves around the generation of adversarial examples, which re-

fer to samples that are carefully crafted for these recognition tasks to confuse and 

mislead detection tasks. Adversarial learning finds applications in various do-

mains including medical care, finance, security, and autonomous driving, demon-

strating promising prospects.  Taking the classical image recognition task as an 

example, this paper provides a detailed overview of recent developments in ad-

versarial learning. Specifically, two main frameworks and corresponding repre-

sentative algorithms of adversarial learning are introduced, including their design 

ideas, key steps, advantages, and disadvantages.. Then, quantitative results of 

different classification algorithms on common datasets are analyzed and com-

pared. The article concludes by summarizing the difficulties in balancing accu-

racy and robustness, parameter settings, algorithm selection, and prospects for 

the future development of adversarial learning, which can provide some new in-

sights for the research field of adversarial learning. 
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1 Introduction 

With the rapid advancements of computer vision and machine learning, image classifi-

cation has emerged as a crucial task in the field of artificial intelligence. The goal of 

image classification is to accurately assign input images to predefined categories, and 

it has wide applications in various domains such as face recognition, object detection, 

and autonomous driving. However, researchers have increasingly recognized the vul-

nerability and susceptibility to attacks exhibited by models. Real-world data and envi-

ronments are often filled with noise and interference. For example, input data may be 

maliciously modified or randomly perturbed by attackers, leading to unacceptable er-

rors in traditional machine learning models.  
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To address the above problems, image recognition based on adversarial learning
has attracted extensive attention in recent years. As a promising solution to model
robustness and security, adversarial learning mainly focuses on exploring and
analyzing the behavior and performance of models in the face of targeted attacks.
Adversarial learning typically involves two components: adversarial samples and the
target classifier model. The perturbations in adversarial samples are indistinguishable
to humans but can deceive the model. The target classifier model is trained to
correctly recognize the original images and resist misclassification when presented
with adversarial samples, thereby enhancing the model's ability to differentiate
between real and adversarial images. This helps models better cope with interference
and attacks, enhancing their robustness and reliability, and enabling them to better
adapt to complex environments in real-world scenarios.

Adversarial learning methods can be divided into Generative Adversarial
Networks (GANs) and Adversarial Training. GANs are an important adversarial
learning method, whose main idea is to generate realistic samples by adversarial
training between generators and discriminators. The generator is responsible for
generating the faked samples, while the discriminator is used to distinguish the real
samples from the generated ones. Through a feedback mechanism, the generators and
discriminators compete with each other and improve upon each other, with the result
that the generators are able to generate realistic samples that are indistinguishable
from the real samples. Another common adversarial learning method is Adversarial
Training, whose main idea is to inject adversarial perturbations or introduce hostile
samples into the training data in order to improve the robustness of the model to small
perturbations in the input. In this way, the model can have better generalization and
defense capabilities.

In the context of image classification tasks, adversarial learning specifically
investigates attack methods and defense strategies that can manipulate image inputs to
deceive models. Focusing on the above two categories of adversarial learning
frameworks, this paper provides an overview of recent research advances and related
methods in adversarial learning for image classification. In detail, the evolution of the
image classification task and its applications and challenges are reviewed first. Then,
the concepts and fundamentals of adversarial learning will be introduced, including
Generative Adversarial Networks (GAN) and adversarial attacks on samples. A
systematic overview of currently used adversarial attack methods and defense
mechanisms is further provided, which is followed by an analysis of their strengths
and weaknesses. Finally, the potential directions and challenges for future research on
adversarial learning for image classification are discussed, with a view to providing
insights and guidance for further research in the field.

2 Method

2.1 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) [1] are a type of deep learning model that
operates on the principle of training two competing neural network models: the
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generator and the discriminator. The objective of the generator is to learn the skill of
generating authentic-looking samples from random noise, whereas the discriminator's
task is to distinguish between samples produced by the generator and genuine
samples. Through iterative training, the generator and discriminator engage in a
mutual adversarial learning process, gradually improving the generator's ability to
produce more realistic samples while enhancing the discriminator's accuracy.

When GANs are used to enhance the robustness of classifiers, the classifier
serves as the discriminator. It strives to accurately differentiate between genuine
samples and adversarial samples generated by the generator in collaboration with the
attack algorithm. The iterative adversarial training process enables the classifier to
learn robust representations against adversarial perturbations, thereby improving the
classifier's performance and robustness. This approach has been empirically validated
in the Generative Adversarial Trainer (GAT) [2] proposed by Hyeungill et al.
Compared to other methods, GANs offer greater flexibility and creativity in
generating adversarial samples, which leads to superior robustness in classifiers.
However, GAN training is computationally intensive and requires more resources and
time. On the other hand, conventional adversarial training algorithms are simpler and
more direct but may exhibit relatively weaker performance in terms of the quality of
generated adversarial samples and their effectiveness in attacks.

Pouya et al. introduced Defense-GAN [3] in 2018 as a technique that employs
generative models to safeguard classifiers from adversarial attacks. The primary goal
of Defense-GAN is to learn the distribution of original, undisturbed images through
training. During inference, it generates an output similar to the input image but
without any adversarial modifications, which is then fed into the classifier. One
significant advantage of this approach is its compatibility with various classification
models, as it does not require any alterations to the structure or training process of the
classifier. It can function as an additional defense mechanism against any attack, as it
doesn't rely on prior knowledge of adversarial example generation. Experimental
findings consistently demonstrate that Defense-GAN effectively combats different
attack methods and enhances existing defense strategies. However, it should be noted
that Defense-GAN may encounter overfitting problems during adversarial training.
This means that the model may only be capable of adapting to specific types of
adversarial attacks and could lack robustness against unknown attacks.

2.2 Adversarial Training

Adversarial training is a method to enhance model robustness and defense
capability, whose idea is to introduce adversarial samples or perturbations during the
training process. Firstly, adversarial samples or perturbations are constructed using
certain attack methods. The model is then trained using the attack dataset, giving it
the ability to cope with the difficulties presented by both the original and adversarial
samples. The model steadily increases its resilience to adversarial attacks by learning
robust classification against adversarial inputs. The Fast Gradient Sign Method
(FGSM), Projected Gradient Descent (PGD), and Carlini-Wagner (CW) attack are
three distinctive and popular attack methods that are specifically highlighted in this
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study. Other methods include One Pixel Attack, Deepfool, Jacobian-based Saliency
Map Attack (JSMA), among others.

Fast Gradient Sign Method (FGSM) [4] is one of the most fundamental and
widely used attack methods, upon which many other methods are based or improved.
FGSM attack training introduces adversarial perturbations during the training process,
enabling the model to better resist small perturbations in the input. FGSM constructs
adversarial samples by computing the gradient sign of the input sample. Specifically,
given an input sample x and its corresponding label y, the gradient of the loss function
with respect to the input sample is computed, and the resulting sign is multiplied by a
small perturbation ε to generate the adversarial perturbation δ . Finally, the original
input sample is combined with the adversarial perturbation to produce the adversarial
sample x' = x + δ . The constructed adversarial sample appears very similar to the
original sample in appearance, but it can deceive the model into producing incorrect
classification results. The advantages of FGSM, as the most basic attack method, lie
in its simplicity and efficiency. To create the adversarial sample, all that required is to
compute the gradient sign of the input sample and then apply a perturbation.
However, its drawback is that it often generates only slight perturbations that maintain
visual similarity with the original sample. Wong et al. [5] proposed using weaker and
cheaper adversarial ensembles to train robust models, achieving the same
effectiveness as PGD attack training.

Projected Gradient Descent (PGD) [6] is an iterative adversarial attack method
that generates adversarial samples by iteratively applying gradient ascent on the input
samples to deceive the model. The main idea of PGD attack training is to construct
more challenging adversarial samples by repeatedly applying gradient ascent to
maximize the loss function during the training process. In each training step of PGD
attack training, the current model is used to forward propagate the selected adversarial
samples, and the loss function is computed. Then, the gradient of the loss function
with respect to the input samples is calculated, and a projection operation is applied to
constrain the updates within a step size range, epsilon, to obtain the next adversarial
sample. This process is repeated for multiple iterations, generating updated
adversarial samples at each iteration. As a result, the adversarial samples gradually
approach the decision boundary of the model, posing a greater challenge to the model.
The attack principle of PGD, i.e. projected gradient descent over a negative loss is
shown in Equation (1).

��+1 = Π�+� �� + α ⋅ ���� ∇��� θ, ��, �

� = �' ∥ � − �'|∞ ≤ � (1)

where xt denotes the input sample at the tth iteration, α denotes the step size (or
learning rate), S denotes the set of constraints with L∞ as epsilon, and x� + s x'

denotes the projection of x' to the nearest point in the set of constraints S. In this way,
after each iteration, the adversarial samples are projected back into the constraint set
to ensure that they satisfy the constraints of the L∞ paradigm.
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PGD attack is the strongest first-order attack [6] and is regarded as a strong and
effective adversarial attack strategy, as it can overcome many defense measures. The
advantage of training with a PGD attack lies in its iterative nature, which generates
more challenging adversarial samples. Compared to single-step attack methods, PGD
attacks can comprehensively explore the model's vulnerabilities and provide stronger
defense capabilities. However, the main drawback of PGD attack training is its
increased demand for computational resources and time, as each sample requires
multiple iterations to generate adversarial samples, which may be impractical for
certain large-scale datasets.

Carlini and Wagner (CW) [7] proposed three adversarial attack methods in 2017
to effectively attack Defensive Distillation networks. In contrast to FGSM and PGD,
experimental results have shown that the C&W attack method can effectively bypass
most existing defense mechanisms. The primary principle behind CW attack training
is to generate adversarial examples by optimizing an objective function, aiming to
deceive the model into misclassifying while minimizing the magnitude of adversarial
perturbations. Specifically, CW solves an optimization problem to generate
adversarial examples, where the objective function consists of an adversarial loss to
induce misclassification and a regularization term to control the size of adversarial
perturbations. CW attack training possesses several advantages over other adversarial
training methods. Firstly, it is capable of generating more challenging adversarial
examples by simultaneously considering misclassification and the magnitude of
adversarial perturbations through objective function optimization. Secondly, CW can
adapt to different threat models and generate effective adversarial examples even
without knowledge of the attack algorithm. Additionally, CW allows for balancing the
importance of misclassification and perturbation by adjusting the parameters of the
optimization problem to meet specific application requirements. The drawbacks of
CW include relatively higher computational complexity as it requires solving an
optimization problem to generate adversarial examples. Furthermore, CW may impact
the training and inference time of the model as it involves an additional optimization
process for generating adversarial examples.

3 Experiment

3.1 Dataset

Common image classification datasets mainly include MNIST [8], and CIFAR-10 [9].
MNIST is a classic handwritten digital image classification dataset containing 60,000
handwritten digital images for training and 10,000 handwritten digital images for
testing. These images contain numbers from 0 to 9. Each image has a size of 28x28
pixels and is represented as a grey-scale image. The MNIST dataset is typically used
as a benchmark test for machine learning algorithms and models in tasks like
classification.

The CIFAR-10 dataset, which is frequently used for image classification,
consists of 60,000 color images divided into 10 categories, which include different
vehicles and animals. The size of every image is 32 × 32 pixels. the CIFAR-10
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dataset has a high diversity and complexity and is closer to image classification tasks
in real scenarios than the MNIST dataset. This makes CIFAR-10 a common
benchmark for evaluating the performance of various image classification algorithms
and models. In addition, the CIFAR-10 dataset is one of the commonly used datasets
for conducting adversarial attacks and robustness research.

3.2 Quantitative comparison

To quantitatively evaluate the performance of different methods, experiments were
carried out on different datasets. The results of adversarial attack experiments
conducted on the MNIST dataset can be observed in Table 1. Each attack in the table
adopts different attack methods, perturbation sizes, and iteration counts. The source
include the model itself for white-box attacks A , an independent network A' for
black-box attacks, and an framework from [10] (B). The most effective attacks are
indicated in bold for each attack model.

As demonstrated in Table 1, PGD succeeds in the best performance on both A
and A' datasets. Particularly, the results for attacks on the network itself (A ) with
different parameters are superior to FGSM and PGD. The performances of FGSM and
CW algorithms are comparable to each other.

Table 1. Performance of various methods on the MNIST dataset

Method Source Steps Restarts Accuracy

Original - - - 98.8%

FGSM � - - 95.6%

CW � 40 1 94.0%

PGD � 40 1 93.2%

PGD � 100 1 91.8%

PGD � 40 20 90.4%

PGD � 100 20 89.3%

FGSM �' - - 96.8%

CW �' 40 1 97.0%

PGD �' 40 1 96.0%

PGD �' 100 20 95.7%

FGSM � - - 95.4%

PGD � 40 1 96.4%

Table 2 provides the results of attacks made using the same configuration on the
CIFAR-10 dataset. The source used for the attacks include the network itself for
white-box attacks (A ), an independent network A' for black-box attacks, and a
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network trained on the original dataset ( Anat ). The most effective attacks are
indicated in bold for each attack model. For the more challenging real-world dataset,
the attack algorithms demonstrate a stronger impact. This is demonstrated through
white-box attacks, where the accuracy on the adversarial dataset decreases by up to
41.5% in comparison to the classifier's accuracy on the original dataset. Among
white-box attacks, even after parameter tuning, PGD remains the strongest attack
method. However, CW attacks are also highly effective, while FGSM is relatively
weaker. In the case of black-box attacks (A' ), PGD is the strongest, followed by
FGSM, and CW is the weakest. When attacking the network Anat , which has
undergone adversarial training, the difference in accuracy compared to the classifier
network on the original data is minimal, indicating that adversarially trained models
exhibit stronger robustness compared to models without adversarial training.

Table 2. Performance of various methods on the CIFAR-10 dataset

Method Source Steps Accuracy

Original - - 87.3%

FGSM � - 56.1%

CW � 30 46.8%

PGD � 20 45.8%
PGD � 7 50.0%

FGSM �' - 67.0%

CW �' 30 78.7%

PGD �' 7 64.2%
FGSM ���� - 85.6%

PGD ���� 7 86.0%

The Table 3 shows the average classification accuracy using different defense
strategies under different attack conditions. It can be found that Defense-GAN
significantly outperforms MagNet and adversarial training. This indicates that GAN
has a significant advantage in terms of effectiveness in improving the robustness of
the model.

Table 3. Average classification accuracy using different defense strategies

Attack No Attack No Defence Defence-GAN MagNet Adv. Training

FGSM 0.986 0.608 0.978 0.133 0.557

RAND+FGSM 0.986 0.087 0.974 0.132 0.589

CW 0.986 0.083 0.969 0.030 0.100
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4 Discussion

Accuracy and robustness must be traded off in adversarial attacks. Adversarial
training can potentially decrease the accuracy of a model on normal inputs while
increasing its robustness against adversarial attacks. This trade-off needs to be
carefully considered to ensure that the model remains useful for its intended task.
Further research is needed to explore various adversarial learning methods.

In adversarial learning, parameter tuning is a challenging task that significantly
impacts the final results. Whether it is adversarial training or training based on
Generative Adversarial Networks (GANs), selecting appropriate parameters is crucial
for ensuring the model's robustness. However, there is no universal standard for
determining these parameters, as different datasets, models, and attack scenarios may
require different settings. Parameter tuning often involves a combination of
experimentation and expertise, relying on human intuition and domain knowledge,
necessitating further investigation.

Choosing suitable algorithms in adversarial learning is highly challenging due to
the diversity and complexity of attack and defense methods. One difficulty lies in the
diversity of algorithms. In adversarial learning, there exist various attack and defense
methods, each with its specific advantages and limitations. For example, when
generating attack datasets, one can choose between fast and efficient first-order
methods like Fast Gradient Sign Method (FGSM) or more complex but powerful
iterative methods like Projected Gradient Descent (PGD). Regarding defensive
training, different methods such as adversarial training, Generative Adversarial
Networks (GANs), among others, can be employed. Selecting the appropriate
algorithm requires considering the complexity of the problem, dataset characteristics,
model performance requirements, available computational resources, and other
factors. Another challenge is algorithm evaluation and comparison. Evaluating
algorithms in adversarial learning involves multiple metrics such as attack success
rate, defense success rate, and robustness indicators, which may conflict with each
other, such as the trade-off between robustness and accuracy. Therefore, it is
necessary to consider multiple metrics to comprehensively evaluate the algorithm's
overall performance and make trade-offs in practical applications.

With the continuous development and research in the field of adversarial
learning, we can expect more guiding principles and methods to help select
appropriate algorithms and improve model performance and robustness. Further
exploration of automated methods for algorithm selection and optimization can
reduce reliance on manual parameter tuning and discover better parameter
configurations and algorithm combinations. Additionally, the application of
adversarial learning extends beyond image recognition, and exploring algorithm
transferability and generalization is also worth investigating.
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5 Conclusion

This paper provides a concise overview of adversarial learning in image
classification. Two primary approaches to adversarial learning and their respective
typical algorithms are introduced, followed by quantitative data analysis and
comparisons of different algorithms applied to common datasets and base classifiers.
The paper concludes by summarizing the current challenges in adversarial learning,
including the balance between accuracy and robustness, parameter settings, and
algorithm selection, and provides prospects for the future development of adversarial
learning. This paper is aimed to provide researchers with an introduction to
adversarial learning in image classification and promote further advancements in this
field. Adversarial learning has the potential to enhance model security and improve
the reliability of image classification tasks, thus enabling better real-world
applications.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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