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Abstract. The computer vision community has become increasingly interested 

in Low-Light Image Enhancement (LLIE), which tries to transform low-light 

photos into typically exposed images. The convolutional neural network has 

advanced quickly, and this has helped the deep learning-based LLIE approaches 

make a breakthrough in accuracy and visual effects. However, some challenges 

still remain, especially when dealing with noise from the black color blocks and 

halo near the boundary of the bright area. In this study, we provide a low-light 

picture enhancing technique based on the Unet3+ to overcome these problems. 

Specifically, we first transform DCE-Net in Zero-DCE to Unet3+, which 

enhances the network's fitting ability. Then, we introduce a denoising module 

and an SSIM loss, which can improve the qualitative and quantitative metrics of 

the network. Numerous tests support the effectiveness of our suggested approach, 

where the normal exposure images produced have a stable brightness and are 

suitable for a range of scenes. 

Keywords: LLIE; UNet3+; image denoising; SSIM loss 

1 Introduction 

The goal of Low-Light Image Enhancement (LLIE), a crucial basic computer vision 

task, is to transform low light images into normally exposed images. People frequently 

generate low light images in daily lives, which may be due to users being unfamiliar 

with their camera equipment leading to incorrect exposure time setting, or the object is 

in a backlit environment. Low-light images are a challenge for computer vision. In face 

verification tasks, for example, the dark environment will produce a dark face which 

may lead to a decrease recognition accuracy. At the same time, with the widespread 

application of computer vision in daily life, more and more scenes require that the flash 

cannot be used during shooting, such as pedestrian detection at night. In this case, 

turning on the flashing lights may cause dizziness to pedestrians, thereby increasing the 

risk of traffic accidents. In light of this, there is a great deal of
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interest in research regarding the creation of efficient LLIE algorithms, which also has
significant theoretical value and promising application opportunities.

Numerous deep learning-based solutions to the issue of LLIE task have surfaced
most recently. By utilizing deep learning techniques, LLNet [1] initially addresses the
low-light picture enhancing problem. Retinex-Net [2] makes the assumption that
reflectance and illumination can be separated out of an image. Zero-DCE [3] makes
use of zero-shot learning, which formulates light enhancement as the endeavor of
picture-specific curve estimate and addresses the issue of low-light image
improvement by skillfully creating loss functions. Using unsupervised learning,
EnlightenGAN[4] converts the LLIE task into an image generation task.

However, some common challenges remain in the research of LLIE. The first
difficulty is noise, as seen in Figure 1. The noise that can be ignored in the original
image is amplified when the network is enhanced, especially when there are large
black color blocks in the original image. The second challenge is halo. When a
high-contrast image is enhanced by a network, contrasting color patches are enhanced
at the same time, and brighter color patches are enlarged into halos.

(a) Failure enhancement with noise (b) Failure enhancement with halo

Fig. 1. Visualization of failure low-light image enhancement cases (Photo/Picture credit:
Original)

This paper suggests a deep learning-based network for enhancing low-light
pictures to address these problems. This paper transforms DCE-Net in Zero-DCE to
Unet3+[5], which enhances the network's fitting ability. Use SSIM loss [6] and
increase its weight, which can improve the qualitative and quantitative metrics of the
network. In addition, try to introduce a denoising module to solve the noise problem,
which improves the quantitative metrics. The network made up of these methods
generates images with normal exposure that are suitable for a variety of scenes and
have stable brightness.

In conclusion, this paper proposes a deep learning-based approach to deal with
LLIE task and reports promising outcomes. This paper expands the Unet3+ network,
SSIM loss, and denoising modules based on Zero-DCE. The network improves the
accuracy of qualitative and quantitative metrics and it generates better augmented
pictures. The research findings presented in this paper are crucial to the
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implementation and advancement of LLIE technology and serve as a helpful guide for
related study and real-world application in the area of computer vision.

2 Method

Figure 2 depicts the overall procedure. The backbone network is an adapted Unet3+,
and the adapted Unet3+ includes 3 times of encoding and 3 times of decoding. During
the test, the original image is input to the h1 node, generate a Curve Parameter Map,
input it as a parameter into LE-curve to generate 4 enhanced images, and output the
result of the hd1 branch.

Fig. 2. Overall structure diagram of proposed method

2.1 Image pre-processing

When selecting the data set, the train set uses 3021 images of different exposure
levels of SICE[7] Part1 and 360 images of ground truth exposure as the paired
training set, which is cropped to 512 x 512 for easy access. The test set uses 767
weakly exposed images of SICE Part2 and their corresponding 229 ground truth
exposure images as test data for quantitative metrics(PSNR/SSIM/MAE) ; 64 DICM
and 10 LIME unlabeled data provided by Zero-DCE are used as test qualitative
metrics (PIRM2018[8]) data.

2.2 Revisiting Unet3+

Unet3+ is a network model that was released in 2020, which is used in the network
design to replace the Unet network in Zero-DCE. Deep supervision is one of its
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characteristics. Unet3+ has four outputs when decoding. Each output is calculated and
accumulated by weight when calculating the loss function. Unet3+ also has a large
number of shortcut layers, which allows the network to fully consider the output of
previous steps each time it decodes.

When designing Unet3+, to reduce computational complexity, the network was
simplified to use only three encodings and three decodings, resulting in an adapted
Unet3+ with four outputs. To perform fast computations, the network uses only
convolutional and Relu layers. To ensure that the four outputs of Unet3+ have the
same shape, the output channels of all convolutional layers are set to 24. The number
24 represents three output channels(RGB), each of which can go through 8 iterations
of LE-Curve.

2.3 Squeeze and excitation

This paper adopts the SEnet [9] attention mechanism in Unet3+. Figure 3 depicts the
overall method. It is a feature extraction model of deep learning, and its primary goal
is to enhance the model's capacity to extract features. The central idea is to introduce
a module called Squeeze-and-Exclusion, which learns the relationship between
channels and adaptively adjusts the channel weights of feature graphs.

Using a global average pooling operation in the Squeeze stage, SENet reduces the
input feature map from a three-dimensional tensor (height, width, and channel) to a
one-dimensional vector. The per-channel average is calculated by the global average
pooling operation, enabling the acquisition of a channel-specific feature description
for each channel. SENet introduces a small multi-layer perceptron (MLP) in the
Excitation stage, which has two completely connected layers. The goal of this MLP is
to learn the relationship between channels by modeling the output of the Squeeze
stage. The first fully connected layer, in particular, reduces the dimension of the input
feature map before performing nonlinear transformation through an activation
function (such as ReLU). The second completely connected layer then upscales the
feature map and restores it to its original number of channels. The output is then
restricted to the range of 0 to 1 by a Sigmoid function.

Through multiplication, the weight of each channel output in the Excitation stage is
re-weighted to the original feature map. This implies that each channel's significance
will be altered in accordance with its weight. SENet can now pay more attention to
the feature channels that are more important for the current dark image enhancement
task, such as the contour features of the input image, after re-weighting. The
performance and generalizability of the model can be enhanced by this operation,
which can make the entire network pay attention to the crucial features while
suppressing the irrelevant ones. Network inference generates a Curve Parameter Map.
This paper refers to Zero-DCE's LE-Curve stage, uses the Curve Parameter Map to
process the original picture, and generates an enhanced picture.
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Fig. 3. SENet Attention Mechanism[9]

2.4 Image denoising

After forming the network, it was found that Unet3+ improved both the image and the
noise, so the denoising module was used in this paper. The TV-Chambolle denoising
method is used to denoise the image in this paper. The original image is loaded first in
the processing process, and then Gaussian noise is added. This paper establishes
appropriate parameters by estimating the standard deviation of noise. The noisy image
is then denoise using the TV-Chambolle denoising function, and the result is
converted to an 8-bit unsigned integer type. Finally, save the denoised image to the
output folder you specified. This method can reduce noise while maintaining image
details and improving image quality.

2.5 SSIM loss

The structural similarity index can evaluate the degree of distortion in images as well
as the similarity of two images. SSIM is a perceptual model that, unlike MSE and
PSNR, measures absolute error. It is more consistent with how human eyes naturally
perceive things. The loss function focuses on three main features of an image:
brightness, contrast, and structure. By adjusting the three parameters, and, the
influence factor weights (α, β, γ) of the three influencing factors can be adjusted, and
the enhanced image can be compared with the original label for learning, so that the
resultant image's quality might be enhanced.

Based on the above analysis, considering the weakness of Zero-DCE in
supervisory indexes PSNR, SSIM, and MAE during training, this paper introduces a
supervisory SSIM loss, whose calculation method is shown in Equations (1) and (2).
The brightness indices for the inputs X and Y are calculated as average brightness,
contrast, and structure, respectively, and then compared to obtain the initial evaluation
of similarity. To obtain the second evaluation, the contrast is calculated and compared
after the impact of brightness has been subtracted. The control group has also been
removed using the outcomes of the previous step, and the structure has been
compared. The final evaluation result is created by combining the results.

����(�, �) = (2����+�1)(2���+�2)
(��2+��2+�1)(��2+��2+�2)

(1)

SSIMLoss = 1 − SSIM(x, y) (2)
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The total loss of our method is a linear combination of TV_loss, spa_loss, col_loss,
exp_loss and ssim_loss, which can be seen in Equations (3).

Loss = 200 × TV_loss + 10 × spa_loss + 5 × col_loss

+ 10 × exp_loss + 100 × ssim_loss (3)

2.6 Model training

Pairing data, which comprises of the original picture and the improved ground truth
picture, should be fed into the Unet3+ network during training to produce four Curve
Parameter Maps. The LE function calculates the four maps to generate four enhanced
images. The Zero-DCE loss functions (space consistency error, exposure control
error, color constant error, illumination smoothing error) are calculated directly from
the enhanced pictures, while the SSIM loss is calculated by comparing the enhanced
ground truth image to the enhanced images. These loss functions are accumulated
based on their weight, and network training is performed.

3 Experiments

3.1 Datasets

This study employs a training set consisting of 3021 images from part 1 of the SICE
dataset, accompanied by their corresponding label images. The multi-exposure
enhanced photos in the SICE dataset were taken in a variety of settings and at various
times. To facilitate data processing, the images were resized to 512x512 dimensions
and stored. To assess the performance of the network model, two test sets were
devised in line with the methodology outlined in Zero-DCE paper. The supervised
indicators of the network model were evaluated using part 2 of the SICE dataset,
whereas the unsupervised indicators were assessed based on 10 LIME and 64 DICM
images.

3.2 Evaluation metrics

In this study, the unsupervised learning method proposed in the PIRM paper is
adopted, which integrates two unsupervised indicators, Ma [10] and NIQE [11].
NIQE is an unsupervised learning index for evaluating the quality of images. It
utilizes a set of local statistical features, including the image's gradient, contrast,
brightness, and texture information. Compared to traditional evaluation metrics like
PSNR or SSIM, NIQE places greater emphasis on the perceptual quality of the image,
rather than solely focusing on pixel-level differences. It provides a better reflection of
how the human eye perceives image quality. Ma is a non-reference metric that was
learned from scores on visual perception. The index includes three low-level features
in the space and frequency domain that are used to quantify super-resolution artifacts.
Then, without using real ground photos, a two-stage regression model is developed to
forecast the quality score of high-resolution photographs.
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The final unsupervised index PIRM used in this study is (NIQE+(10-Ma))/2, and
the lower the value, the higher the image quality. This is done to strike a balance
between the trade-off between image quality and model performance and help the
model achieve a better comprehensive evaluation in the dark image enhancement
task.

Three related metrics, PSNR, SSIM, and MAE, are used in supervised learning.
Peak Signal-to-Noise Ratio (PSNR), a commonly used statistic for evaluating image
quality, is used to assess how much noise and signal there is in an image and how
well a denoising method is working. The image quality increases as the value
increases. The Structural Similarity Index (SSIM) is an index used to assess the
quality of photographs and determine how similar two images are to one another. This
parameter index assumes that the structural information in the image should remain
unchanged when it is not distorted and takes into account the similarity of brightness,
contrast, and structure as well as the subjective perception of human eyes. Because of
this, SSIM compares the structural information of the two images to determine how
similar they are. The mean absolute error (MAE) index calculates the average
discrepancy between the expected value and the actual value. This loss is more
resilient and unaffected by extreme values as compared to other often used indicators,
such as mean square error (MSE). Additionally, because MAE only considers the
absolute value of the error, it can more accurately reflect the error in real-world
situations.

3.3 Experiment settings

All testing was carried out on a machine with an Intel Core i7 CPU and 16GB of
RAM. The PyTorch deep learning framework is used in this study to create the model
network, which is trained and tested on an NVIDIA GeForce GTX 2080Ti GPU.
Additionally, the learning rate is set at 0.0001 and its gradient decrements by 10 times
per 20 epochs.

The paired training set is first input into the 256x256 network model, which
generates an enhanced picture. The color loss, exposure loss, illumination loss, and
space loss are then calculated for the enhanced picture itself. The SSIM loss is
calculated using the enhanced pictures and label pictures, and the total loss is obtained
by adding them in a specified proportion. After that, the model is trained using the
Adam optimizer.

3.4 Performance analysis

The metric this paper used are reported in Table 1, a lower PIRM value means better
perceptual quality, the same as MAE. In terms of qualitative indicators, we performed
better than Zero-DCE on the DICM dataset. And, in terms of quantitative indicators,
all of our indicators(PSNR/SSIM/MAE) are better than Zero-DCE.
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Table 1.Model performance comparison between Zero-DCE and this paper

LIME
PIRM metric

DICM
PIRM metric

SICE
PSNR metric

SICE
SSIM metric

SICE
MAE metric

Zero-DCE 2.76 3.04 16.57 0.59 98.78
ours 2.8785 3.0277 18.1590 0.5998 81.0976

Numerous ablation tests are conducted in this research to demonstrate the
effectiveness of each component. As a supervised loss function, SSIMLoss aims to
make the output images of the network model more closely resemble the label images
in terms of brightness, contrast, and structure. The comparison results between the
model with SSIMLoss and the original model are presented in the Table 2 and Figure
4 below. The inclusion of SSIMLoss resulted in a substantial drop in the unsupervised
index and a rise in the supervised index, indicating that the enhanced images achieved
better brightness and contrast while maintaining image quality.

Table 2.Model performance with/without SSIMLoss

LIME
PIRM metric

DICM
PIRM
metric

SICE
PSNR
metric

SICE
SSIM metric

SICE
MAE metric

original result 2.8785 3.0277 18.1590 0.5998 81.0976
w/o SSIM Loss 3.2423 3.3333 16.5723 0.5783 101.8291

(a) Ground truth[7] (b) Our enhancement (c) Without SSIM Loss

Fig. 4. Visual comparison of enhancement with/without SSIM Loss

To further examine the role of SEBlock, we conduct a number of tests, and the
outcomes are displayed in Table 3 and Figure 5. As an attention mechanism, SEBlock
increases the network's width and adaptability. The comparison between the results of
removing SEBlock and the original model is shown in the table below. While
SEBlock's unsupervised index has largely remained unchanged, its supervised
learning index has clearly improved. This demonstrates that while the SEBlock
network's ability to fit data has undoubtedly improved, the quality of the image has
not. To improve the model's ability to perceive dark details, add SEBlock attention
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mechanisms at the entrance of each input channel. The model will be better able to
enhance subtle texture, edge, and detail information as a result of this, and it will also
be better able to change the image's brightness distribution, resulting in a more
balanced brightness change.

Table 3.Model performance with/without SENet

LIME
PIRM metric

DICM
PIRM metric

SICE
PSNR metric

SICE
SSIM metric

SICE
MAE metric

this paper 2.8785 3.0277 18.1590 0.5998 81.0976
w/o SENet 2.8128 3.0758 15.4659 0.5641 106.7277

(a) Ground truth[7] (b) Our enhancement (c) Without SENet

Fig. 5. Visual comparison of enhancement with/without SENet

In order to address the presence of noticeable noise in some of the images when
examining the network results, this paper attempts to utilize a simple denoising
module called TV-Chambolle to mitigate the noise issue. By reducing the image's
overall fluctuation, the TV-Chambolle method lowers the amount of noise in the
image.To be more specific, after loading the image to be processed, a random noise
function is used to add Gaussian noise to the original picture to simulate the impact of
noise in the actual world. The estimation function is then used to estimate the noise
standard deviation in order to determine the noise intensity. The image with noise
added is then denoised using the TV-Chambolle algorithm. The algorithm gradually
reduces the total variation of the image through iterative optimization in order to
produce the desired denoising effect. The updated image's pixel value is determined
according to the gradient in each iteration. The denoised image is finally obtained.

As Table 4 and Figure 6 shown, the TV-Chambolle algorithm-based method of
image denoising can reduce noise to boost the clarity of low-light photographs. It
should be noted that while using this method, and the supervised indicators may be
improved, the unsupervised indicators may be decreased. This is due to the fact that
part of the image's fine details may be lost during the denoising process, which can
also have an impact on the performance of some unsupervised indicators.
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Table 4.Model performance with/without denoising

LIME
PIRM metric

DICM
PIRM metric

SICE
PSNR metric

SICE
SSIM metric

SICE
MAE metric

this paper 2.8785 3.0277 18.1590 0.5998 81.0976
with
denoising

3.1207 3.1260 15.2183 0.6018 80.2510

(a) Ground truth[7] (b) Our enhancement (c) with denoising

Fig. 6. Visual comparison of enhancement with/without denoising

4 Discussion

In this study, a technique for improving low-light photographs using the Unet3+
network is proposed and the SEnet attention mechanism, training with the SSIM loss
function, and introducing a denoising module for improved results. There are still
areas for optimization and enhancement in this study, just like there are in other
techniques for boosting low-light photographs. These improvements can be explored
in areas such as data augmentation, model architecture, loss functions, training
strategies, and denoising techniques.

(1) In terms of data augmentation, the current paper only focuses on enhancing
low-light images and does not consider optimizing overexposed images. However, in
practical applications, overexposed images are frequently encountered. Therefore, a
promising approach for improvement is training a model that optimizes both
overexposed and underexposed images simultaneously. By combining these two
scenarios, the optimized images can have more stable brightness, which improves the
robustness of the enhancement results.

(2) In terms of model architecture, the paper chooses the Unet3+ network as the
basic framework, supplemented by the SEnet attention mechanism. Despite the good
performance achieved in this paper, overfitting is still a common problem in practical
applications. In order to overcome overfitting, additional regularization mechanisms
can be considered, such as adding regularization items or using Dropout[12] layers to
reduce model complexity and improve generalization ability. Furthermore, different
model architectures can be explored, such as introducing residual connections or
adopting deeper network structures, to further enhance the enhancement effect.
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(3) SSIMLoss is chosen as the loss function for supervised learning in terms of loss
function selection. Although SSIMLoss has benefits when taking structural similarity
and perceived quality into account together, it is not always the best option. We can
experiment with designing different loss functions to further enhance the
enhancement effect. For instance, using a pre-trained feature extraction network and
perceptual loss, it is possible to compare the perceptual differences between the
generated image and the target image. It is also possible to take into account KL
divergence loss, which measures the disparity between the distributions of the
generated and target images and can be used to make the generated image
distributions more similar to the label distributions of the target image.

(4) In terms of training strategies, the paper employs more than 100 pairs of
different loss weight combinations as an effective strategy for exploring loss function
weight combinations. However, this method does not combine the weights for
multi-supervision in Unet3+. Further improvements can be attempted by trying
different weight combination strategies, including different combinations for the
attention mechanism in Unet3+. The model's ability to enhance itself and its speed of
convergence can both be further enhanced by optimizing the training strategy.

(5) In terms of denoising, the paper introduces a denoising module to improve
low-light image enhancement. However, this module has some limitations. The
current implementation uses a widely used traditional denoising algorithm in the field
of image processing. The fundamental principle of this algorithm involves smoothing
the image to reduce noise. However, the algorithm employs fixed parameter values
(sigma and weight), which may result in inconsistent denoising outcomes across
different images. Since different images may have different noise levels and noise
characteristics, more flexible denoising methods are required to adapt to different
scenes and noise types. In future research, more advanced denoising algorithms, such
as deep learning-based methods or adaptive denoising techniques, can be explored to
enhance the robustness and adaptability of the denoising effect. These enhancements
would considerably enhance the performance and utility of the proposed technique for
improving low-light photographs.

5 Conclusion

In this paper, we propose a low-light image enhancement (LLIE) method based on
image denoising and structural similarity loss, aiming at alleviating the noise from the
black color blocks and halo near the boundary of the bright area. We first transform
DCE-Net in Zero-DCE to Unet3+, which enhances the network's fitting ability. Then,
we introduce a denoising module and an SSIM loss, which can improve the
qualitative and quantitative metrics of the network. Extensive experimental findings
show that our suggested approach works. We finally discuss the possible directions to
improve the quality and universality of the enhancement effect from designing model
architecture, selecting an appropriate loss function, optimizing the training strategy,
and enhancing the denoising module.
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which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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