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Abstract. The objective of this research endeavor is to propose an innovative 

methodology for diagnosing lung cancer through a sophisticated approach to 

data augmentation. In essence, the proposed method harnesses the potential of 

the Swin-Unet model, a unique architectural design for feature extraction and 

classification. Further, it employs StyleGAN3-a state-of-the-art technique from 

the realm of Generative Adversarial Networks - to enhance and expand the da-

taset. In tandem with these techniques, the Copy-Paste method is deployed to 

amplify the diversity and volume of the dataset, effectively bolstering the net-

work model's generalization capabilities. A comparative analysis, observing the 

impact of dataset enhancement and different data augmentation techniques on 

the Swin-Unet's classification task, is conducted to validate the study's hypothe-

sis. The study aims to elucidate the effectiveness of using Generative Adversar-

ial Networks for dataset expansion and their role in improving the diagnostic 

precision of the model used for lung cancer diagnosis. The research findings 

aspire to contribute valuable insights that could potentially enhance the accura-

cy, standardization, and efficiency of lung cancer diagnosis. This is particularly 

beneficial in scenarios where the available sample sizes are limited, posing 

challenges to effective diagnosis and treatment planning. As such, the value of 

the proposed method is paramount, given its potential to revolutionize current 

practices in lung cancer diagnostics. 
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Lung cancer, a grave illness posing a severe threat to human life, continues to be a
global health problem with rising rates of incidence and death. In 2020 alone, it is
estimated that roughly 205 individuals succumbed to lung cancer on an hourly basis
worldwide [1]. A regime of early screening and detection is pivotal to obtaining
favorable outcomes in the treatment of lung cancer. Presently, the primary mode of
screening for lung cancer is medical imaging techniques, with a special emphasis on
Computerized Tomography scans. Regrettably, drawbacks of this approach include
the high operating costs, extensive radiation exposure, and low specificity in cancer
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detection, despite its prowess in identifying cancerous tumors at their nascent stage.
Hence, it becomes imperative to devise innovative techniques and technologies for
early diagnosis and treatment of lung cancer. In this regard, Machine Learning and
Deep Learning are emerging as a hopeful research direction for better lung cancer
detection regimes. However, the creation of varied and representative datasets is
fundamental to enhancing computer-aided diagnosis, which incorporates Artificial
Intelligence. Unfortunately, scarcity of medical data continues to hinder progress in
this field [2].

In recent years, significant achievements have been made in the medical imaging
field with the use of Generative Adversarial Networks (GANs) for expanding datasets.
Nevertheless, the process of collecting and annotating medical segmentation datasets
presents costly and challenging hurdles. The quantity of medical image datasets is
constrained by medical resources, and only trained medical image experts can
annotate the data with precision. In such scenarios, semi-supervised medical image
segmentation methods that use discriminators and self-learning mechanisms can
enhance the performance and generalizability of medical semantic segmentation
models, even when there are few annotated pixels. However, these methods still
primarily focus on generating annotations for medical images and have not effectively
augmented medical image data, a key issue requiring attention [3]. Moreover, quality
medical datasets are vital for propelling healthcare innovations and elevating patient
care, but their availability is scarce owing to the sensitive nature of medical data and
various barriers that hinder data sharing and analysis. These obstacles include privacy
concerns, a lack of standardization, competition among healthcare providers, and
legal impediments [4]. Sanitizing data is an essential step to safely and legally publish
datasets that contain private information. Differential privacy is generally a prevalent
framework used for data sanitizing which adjusts based on input information for a
specific task. Consequently, this technique for sanitizing data severely restricts the
type and form of datasets that can be published and exhibits poor adaptability for
unforeseen new tasks. However, in comparison to conventional data privacy
protection techniques, Generative Adversarial Networks have demonstrated superior
performance in safeguarding privacy. These networks can generate synthetic data that
resemble the input distributions of the original dataset while also ensuring data
privacy. Specifically, Generative Adversarial Networks add calibrated random noise
to the generated gradient information during the backward propagation stage of model
training to ensure privacy protection. Although these methods have yielded
reasonable results, most have not yet achieved the quality level of the original dataset
[5].

In an effort to address these issues, this paper proposes a novel method for lung
cancer diagnosis through data augmentation. This approach involves the use of the
Swin-Unet model for feature extraction and classification, the StyleGAN3 for dataset
enhancement and expansion, and the Copy-Paste method to improve the diversity and
quantity of the dataset and to augment the generalization capability of the network
model. By comparing the impact of dataset enhancement and different data
augmentation methods on the Swin-Unet classification task, the effectiveness of
expanding datasets through Generative Adversarial Networks and improving the
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diagnostic accuracy of the model for lung cancer diagnosis can be studied. This
research offers a valuable reference for enhancing the accuracy, standardization, and
speed of lung cancer diagnosis in scenarios with few samples [6].

2 Methodology

The proposed lung diagnostic method in this study consists of three parts: the GAN
image synthesis network, the data augmentation part, and the Swin-Unet part.

2.1 Generative Network Structure

This study employs a generator identical to styleGAN3 as shown in the Fig. 1.
Initially, a mapping network is used to transform the initial latent code, which follows
a normal distribution, into an intermediate latent code, denoted as � ∼ � .
Subsequently, the synthesis network � begins generating images �� = � �0; � . To
facilitate precise continuous translation and rotation of input values, Fourier features
are utilized. Specifically, frequencies are uniformly sampled within a circular
frequency domain with �� = 2, and these frequencies remain fixed during the training
process. By employing Fourier features, the generator becomes more suitable for
simulating unaligned and arbitrarily oriented datasets, as any geometric
transformations of intermediate features �� are directly propagated to the final ��.

Here, � refers to a sequence of layers consisting of convolutional, non-linear, and
upsampling layers. In contrast to the previously successful styleGAN2, the N-layer
sequence does not include a noise component. This modification ensures that the
precise sub-pixel positions of each feature are inherited entirely from the underlying
coarse features. Although this change does not significantly affect the model's
performance, it reduces computational complexity to some extent [7].

The intermediate latent code � controls the convolutional kernel of the synthesis
network � . During training, the exponential moving average (EMA) of the mean
squared value �2 = � �2 is computed for all pixels and feature maps. The feature
maps are then normalized by dividing them by �2 before convolutional operations
are applied. After incorporating the bias term �� , each layer at every resolution
undergoes a 2 × upsampling, reducing the number of feature maps by half.
Subsequently, the data passes through the Leaky ReLU activation function and
undergoes a 2 × downsampling.
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Fig. 1. System Block Diagram (Photo/Picture credit: Original)

2.2 Data augmentation

In the data augmentation part, a simple Copy-Paste method is employed, which has
been shown to be effective in previous studies, particularly in semi-supervised
models. This method randomly selects two images and applies random perturbations
and flips to both images. Then, a subset of the segmentation from one image is pasted
onto the other image. The scaling factor of the images ranges from 0.8 to 1.25 to
ensure the coherence of the output image distribution [8].

During the process of image pasting, a binary mask � for the pasted object can be
generated based on the annotations of the real image. To ensure the smoothness of the
mask, a Gaussian filter is applied. Subsequently, the new image is computed as �1 ×
� + �2 × 1 − � , where �1 represents the pasted object and �2 represents the main
image.

2.3 Segmentation Network Structure

The design of the segmentation network in the study is based on Swin-Unet, which
comprises of encoder, bottleneck, decoder, and hop connections. The Swin
Transformer block serves as the fundamental building block of the network. By
segmenting the input image into non-overlapping patches of size 4 × 4 , the input
sequence is transformed into an embedding sequence. By applying this approach, the
feature dimension of each patch is transformed to 48 [9].

The decoder section of the network is composed of Swin Transformer blocks and
patch expansion layers. To address the information loss resulting from downsampling,
the contextual features are combined with multi-scale features from the encoder using
skip connections [10]. The patch expansion layers reshape the adjacent dimension
feature maps into a larger feature map and perform a 2 × upsampling of the resolution.
Following this, another patch expansion layer is used to perform a 4 × upsampling of
the image, restoring the resolution of the feature maps to match the input resolution
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[11]. Finally, a linear projection layer is utilized to generate the segmentation
predictions based on these outcomes.

3 Experiment and analysis

3.1 Dataset

This study utilizes the LUNA16 dataset, which is publicly available and derived from
the LIDC/IDRI database under the Creative Commons Attribution 3.0 Unported
license. The LUNA16 dataset itself is also licensed under the Creative Commons
Attribution 4.0 International license. Scans with a slice thickness greater than 2.5
millimeters were excluded, resulting in a total of 888 CT scans included in the
dataset. The LIDC/IDRI database also contains annotations collected through a two-
stage annotation process performed by four experienced radiologists. Each radiologist
marked non-nodule lesions, nodules with a size less than 3 millimeters, and nodules
with a size greater than or equal to 3 millimeters. The reference standard selected for
this study includes all nodules with a size greater than or equal to 3 millimeters that
were confirmed by at least three radiologists [12].

The focus of this study is to investigate data augmentation methods in the context
of limited data. Thus, despite the availability of 1,186 nodules with valid annotations
in the LUNA16 dataset, this study selected a subset of 300 images with more
pronounced features to simulate the scenario of data scarcity. Out of these, 270
images were allocated for training purposes, while the remaining 30 images were used
for testing. By adopting this approach, the aim is to examine the effectiveness of data
augmentation techniques for nodule detection in situations where data is insufficient.

3.2 Metrics

Hausdorff Distance (HD).
HD proposed by the German mathematician Felix Hausdorff in 1914, is a distance
metric used to measure the similarity between two non-empty finite sets. It is defined
as the maximum of the minimum distances from each point in one set to the other set
and vice versa. Mathematically, the Hausdorff Distance between two sets A and B is
denoted as H(A, B) and calculated as follows:

� �, � = max ℎ �, � , ℎ �, � (1)

where h(A, B) represents the minimum distance from each point in set A to the
nearest point in set B, and h(B, A) represents the minimum distance from each point
in set B to the nearest point in set A.

The computation of Hausdorff Distance involves finding the distances between all
points in the two sets and determining the maximum distance. This enables Hausdorff
Distance to capture the largest difference between corresponding points in the two
sets, making it a valuable metric for quantifying shape dissimilarity.
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Dice similarity coefficient (DSC).
DSC also known as Dice coefficient or Dice index, is a widely used evaluation metric
for image segmentation. It measures the similarity between predicted segmentation
results and ground truth segmentation results. The DSC ranges from 0 to 1, with a
value closer to 1 indicating a higher degree of overlap between the predicted and
ground truth segmentations.

The calculation of DSC is based on the intersection and union of the predicted and
ground truth segmentations. Specifically, it is computed as twice the intersection area
divided by the sum of the areas of the predicted and ground truth segmentations. The
mathematical expression is as follows:

��� = 2×�������������
����������+���

(2)

By computing the DSC, the accuracy and performance of segmentation algorithms
in image segmentation tasks can be evaluated. A higher DSC indicates that the
algorithm captures the target structures in the image more accurately and is more
consistent with the ground truth segmentation.

In this study, certain modifications have been made to the Dice similarity
coefficient for the semantic segmentation task of lung tumors, with the aim of
encouraging the model to predict the lesion region more accurately. Specifically, a
hyperparameter α that is multiplied with the intersection area and the total area is
introduced. Through experimental analysis, it was found that a value of 1.2 is more
suitable for α. Therefore, the modified mathematical expression is as follows:

����_����∗ = 2��������������
����������+����

(3)

3.3 Ablation experiments

During the model training process, there were significant challenges in fitting and
oscillation of the loss curve. This was attributed to the fact that, unlike other semantic
segmentation tasks, the majority of lung tumor areas are much smaller than the image
area. To address this issue, a sensitivity analysis of the loss function was conducted in
this study. Specifically, the LUNA16@300 dataset was utilized for training and
prediction, with 800 epochs performed using different combinations of loss functions,
including 0.6Loss_ce+0.4Loss_dice, 0.6Lloss_ce+0.4Loss_dice*, Loss_dice, and
Loss_dice*. The results obtained from these experiments are presented in Table 1.

Table 1. Result of the sensitivity experiment

Loss DSC HD Precision
Loss_dice 0.062 71.07 0.3
0.4Loss_dice*+0.6Loss_ce 0 43.53 0.13
0.4Loss_dice+0.6Loss_ce 0 15.34 0.07
Loss_dice* 0 0 0
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The sensitivity analysis revealed that for semantic segmentation of the extremely
small lesion areas in thoracic tumors, the use of Loss_dice proved to be the most
effective. When combined with the cross-entropy loss function, the proposed
Loss_dice* demonstrated a certain improvement in accuracy compared to the original
method. Therefore, in subsequent experiments, the Dice loss function is adopted as
the primary loss function.

In this section, experiments were conducted using the Swin-Unet network to
investigate the effectiveness of generating images. From the 1000 images generated
by the generator, 279 images with distinct features were selected and annotated.
These images were then combined with the LUNA16@300 dataset, resulting in an
augmented dataset named LUNA16+@579. Semantic segmentation experiments were
performed on the LUNA16@300, LUNA16+@379, LUNA16+@479, and
LUNA16+@579 datasets, and the DSC (Dice Similarity Coefficient) and HD
(Hausdorff Distance) metrics were compared across different datasets.

4 Result

In this study, the Swin-Unet network was trained for 800 epochs using the
LUAN16@300 dataset and various augmented datasets of different sizes. The
obtained results are presented in Table 2. It can be observed from the results that the
proposed data augmentation method significantly improves the segmentation
performance of the semantic segmentation model in scenarios with limited data
availability. As shown in Fig. 2.
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Fig. 2. Synthetic Image Generation and Internal Representations via styleGAN3se
(Photo/Picture credit: Original)

In this study, the Swin-Unet network was trained for a total of 800 epochs, and
experiments were conducted using the LUAN16@300 dataset as well as multiple
augmented datasets of varying sizes as the training set. The experimental results are
presented in Table 2. As the proportion of augmented data increased, there was an
increasing trend in the Dice similarity coefficient of the predicted results, indicating
improved segmentation performance. Furthermore, there was a significant
improvement in prediction accuracy. Therefore, it can be concluded that the proposed
data augmentation method significantly enhances the segmentation performance of
the semantic segmentation model for lung tumors, particularly in scenarios with
limited data availability.

Table 2. Result of the experiment

Dataset DSC HD Precision
LUNA16@300 0.06 71.07 0.31
LUNA16+@379(ours) 0.19 73.24 0.55
LUNA16+@479(ours) 0.19 62.74 0.48
LUNA16+@579(ours) 0.38 69.5 0.61
The primary focus of this study is to enhance the generator of GAN networks, with

minimal modifications to the discriminator. However, it appears that modifying the
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discriminator has the potential to improve the quality of the synthesized images. For
instance, in the training results, some images do not exhibit the desired nodular
features, which could be attributed to issues with the discriminator.

In addition, the LUNA16 dataset used in this study consists of black and white
images. However, the preprocessing technique employed in this paper, namely point
sampling, results in all pixels in the training images being black and white, leading to
the appearance of jagged features at the image edges. This severe aliasing in the
training data is detrimental to conventional GANs. On one hand, the generator needs
to translate the output smoothly at a sub-pixel level, but on the other hand, the edges
must retain the jagged appearance to preserve the characteristics of the training data.
This issue poses a significant and challenging problem in the field of medical image
generation.

The medical images generated by the generator do not include annotation
information. Therefore, the challenge of obtaining high-quality annotated information
in medical datasets still needs to be addressed. In the future, it may be possible to
modify the input of the generator by incorporating the annotation information from
the training set along with the image information into the GAN generator to achieve
the synthesis of annotated information and synthesized images. However, this remains
an open and highly challenging problem.

5 Conclusion

This investigation has successfully introduced a novel approach to lung cancer
diagnosis by means of data augmentation. Utilization of the Swin-Unet model allows
for efficient feature extraction and classification, while application of StyleGAN3 aids
in enhancing and expanding the dataset. The Copy-Paste technique further contributes
to increasing dataset diversity and quantity, thereby significantly improving the
model's accuracy in diagnosing lung cancer. The experimental outcomes verify the
efficacy of employing generative adversarial networks for dataset expansion,
demonstrating a notable enhancement in the performance and generalization capacity
of the network model. The contributions of this research are instrumental in
advancing lung cancer diagnosis, particularly in scenarios with limited sample
availability. The proposed method addresses several drawbacks of existing screening
procedures, such as high costs, exposure to radiation, and low specificity, offering a
viable alternative for the early detection and treatment of lung cancer. Furthermore,
successful implementation of data augmentation techniques using GANs presents a
solution to the paucity of medical image datasets and the challenges inherent in
collecting and annotating medical segmentation datasets. Enhancements in diagnostic
accuracy, standardization, and efficiency achieved through the introduced method
bear significant relevance for innovations in healthcare and patient care. Accurate
early-stage lung cancer diagnosis can facilitate improved treatment outcomes and, in
the long run, decrease the morbidity and mortality rates associated with this
formidable disease.
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Future avenues for research may include further refinement and optimization of the
proposed method, alongside its validation on larger and more diverse datasets.
Exploration of potential integration of other cutting-edge technologies, such as deep
learning and artificial intelligence, might further augment the overall performance and
applicability of the lung cancer diagnosis method. In conclusion, this research
furnishes valuable insights and a robust groundwork for the evolution of superior lung
cancer diagnosis techniques, contributing significantly to the global initiatives aimed
at tackling this formidable health challenge.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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