
Advancing Diabetes Prediction: A Nuanced Six-Class 

Classification System and Risk Factor Interactions 

Investigation 

Shengyuan Zhang 

 
Statistics-data science track, Cornell University, Ithaca, NY 14850, US 

sz663@cornell.edu 

Abstract. This study advances diabetes prediction by introducing a nuanced, six-

class classification system and examining the interaction effects of various risk 

factors. Rather than the traditional binary classification, this research proposes 

six distinct diabetes classes: normal, pre-diabetic, diabetic under control, diabetic 

fair control, diabetic poor control, and diabetic very poor control. These classes, 

derived from Hemoglobin A1c (HbA1c) and blood sugar levels, provide 

healthcare professionals and patients with a more comprehensive understanding 

of the disease. Machine learning algorithms, including Logistic Regression, Ran-

dom Forest, and Dense Neural Network (DNN) for binary classification, and 

Random Forest, Extreme Gradient Boosting (XGBoost), Light Gradient Boosting 

Machine (LightGBM), CatBoost, and DNN for six-class classification, were em-

ployed to compare accuracy rates. Risk factors such as Body Mass Index (BMI), 

age, blood sugar level, and HbA1c level were categorized, and their interaction 

effects were evaluated using conditional entropy and visualized with hierarchical 

clustering, dendrograms, and heatmaps. The findings reveal that multi-class dia-

betes prediction can achieve comparable accuracy to binary classification when 

HbA1c and fasting blood sugar levels are accurately measured. Moreover, the 

investigation into interaction effects yields valuable insights into the heightened 

risk associated with the combination of major risk factors. 
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Diabetes, particularly Type 2 Diabetes Mellitus (T2DM), is a significant global health
concern with a rising prevalence, especially in middle- and low-income countries. The
disease is a major cause of blindness, kidney failure, heart attacks, stroke, and lower
limb amputation. Various risk factors such as genetic disposition and body mass
index. contribute to the development of diabetes. In this context, machine learning has
emerged as crucial tools in the early detection and management of diabetes. These
technologies can analyze large amounts of data and identify patterns, unveiling
patterns that may elude human perception. For instance, machine learning can analyze

https://doi.org/10.2991/978-94-6463-300-9_71
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-300-9_71&domain=pdf


patient data to predict who is at risk of developing diabetes, allowing for early
intervention and potentially preventing the onset of the disease [1]. They can be used
to improve the diagnosis of diabetes and its complications, such as diabetic
retinopathy [2]. Early diagnosis is crucial for patients to control diabetes and prevent
complications. As a result, diabetes has garnered considerable attention within the
field of artificial intelligence-assisted medical diagnosis.

Machine learning algorithms have been extensively used in predicting diabetes,
with each study employing various techniques to enhance the predictive power of
their models. One study utilized a variety of machine learning models, including
models e.g. logistic regression and decision tree trained on a large dataset of patient
records, showing promising results in predicting the co-occurrence of diabetes and
cardiovascular diseases [3]. Another research used an ensemble of machine learning
models, including e.g. Random Forest and AdaBoost trained on the Pima Indian
Diabetes Dataset [4]. In a distinct investigation, a variety of machine learning
techniques were employed, including decision trees, random forests, and gradient
boosting machines [5]. A recent study employed a deep learning model, specifically a
convolutional neural network (CNN), to predict diabetes using retinal fundus images
[6]. Furthermore, a study used a fused machine learning approach for diabetes
prediction, which includes Support Vector Machine (SVM) and Artificial Neural
Network (ANN) models [7].

This study, however, aims to delve deeper into the interaction effects among these
predictors. By employing hierarchical clustering and dendrogram heat maps, the
conditional probability of diabetes given other variables can be visualized.
Furthermore, by fusing two variables, such as age and BMI, the conditional
probability of diabetes given these combined features can be explored. This approach
can uncover more information about interaction effects, potentially enhancing the
predictive power of the models.

In addition to exploring interaction effects, this research also aims to provide a
more nuanced classification of diabetes. Instead of the classical binary classification
(diabetes or not), this study proposed a system that classifies diabetes into six specific
categories: normal, pre-diabetes, diabetes under control, diabetes fair control, diabetes
poor control, and diabetes very poor control. These labels, derived from a
combination of HbA1c and fasting blood sugar levels, provide patients and healthcare
professionals with more detailed information about the disease, facilitating better
decision-making and more personalized treatment strategies.

The importance of this research lies in its potential to revolutionize the
understanding and prediction of diabetes. By exploring interaction effects and
providing a more nuanced classification of diabetes, a more comprehensive
understanding of the disease and its risk factors can be obtained. This, in turn, can
lead to more effective prevention and treatment strategies, ultimately improving the
quality of life for individuals affected by diabetes.
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2 Method

2.1 Data Description

The first dataset termed as Dataset A used in this study [8] is sourced from Kaggle
and primarily derived from Electronic Health Records (EHRs). EHRs are digital
versions of patient health records that contain information about their medical history,
diagnosis, treatment, and outcomes. The data in EHRs is collected and stored by
healthcare providers, such as hospitals and clinics, as part of their routine clinical
practice. However, it is crucial to acknowledge the presence of limitations within this
dataset. Despite its expansive sample size, the data within the EHRs exhibits
imperfections in terms of cleanliness. Some subjects demonstrate a disparity between
exceptionally elevated blood glucose levels and relatively diminished hemoglobin
levels. Moreover, numerous subjects were falsely classified into non-diabetic despite
they are actually diabetic.

The other dataset termed as Dataset B used [9], also sourced from Kaggle, consists
of over 100 patient records collected from a variety of sources, including medical
records, surveys, and interviews. This dataset is preferred due to its cleanliness. Data
were collected with fasting blood glucose to prevent errors, and the diagnosis column
only indicates whether the subject was formally diagnosed or not. It does not reflect
whether the subject has diabetes. However, a limitation of this dataset arises from its
relatively small sample size, comprising less than 150 observations.

Both datasets provide valuable insights into the factors associated with diabetes
and can be used to develop predictive models. However, the limitations of each
dataset, such as the cleanliness of the data in Dataset A and the small sample size in
Dataset B, should be taken into consideration when using these datasets for
investigation. Table 1 provides the overview of the parameters in two employed
datasets.

Table 1. The parameters in both datasets.

Parameters Dataset A Dataset B
Age Yes Yes
Gender Yes Yes
BMI (Body Mass Index) Yes Yes
Hypertension Yes No
Heart Disease Yes No
Smoking History Yes Yes
HbA1c Level Yes Yes
Blood Glucose Level Yes Yes
Diabetes Status Yes No
Diagnosed by medical professional(s) No Yes
Blood Pressure No Yes
Fasting Blood Sugar (FBS) No Yes
Family History of Diabetes No Yes
Diet No Yes
Exercise No Yes
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2.2 Data Preprocessing

In this study, a comprehensive data preprocessing pipeline was meticulously
implemented on a diabetes dataset to ensure its suitability for machine learning
analysis. The initial phase involved discretizing continuous variables such as Age,
Body Mass Index (BMI), Hemoglobin A1c (HbA1c), and Fasting Blood Sugar (FBS)
into categorical bins. This transformation is crucial in facilitating the application of
certain machine learning algorithms.

A significant part of the preprocessing involved the creation of a new column,
'diagnosis_combined', by merging the 'Diagnosis', 'FBS', and 'HbA1c' columns. This
was not merely a reassignment of labels but a strategic move to transform the problem
from a binary classification to a multiclass classification. The new labels, including
'Normal', 'Prediabetic', 'Diabetic-Fair Control', 'Diabetic-Poor Control', and 'Diabetic-
Very Poor Control', were assigned based on the combined information from the three
original columns. This transformation allowed for a more nuanced understanding of
the diabetes condition, moving beyond a simple binary diagnosis and providing a
more detailed classification that reflects the varying degrees of severity in diabetes.
Following the reassignment process, it is crucial to take out blood glucose level and
HbA1c level columns to ensure the predictive model does not have access to
information that would not be available in a real-world prediction scenario without
medical examinations. This data leakage directly causes model overfitting and lack of
generalizability and interpretability of other independent variables.

To address class imbalance in the target variable, an oversampling technique was
utilized using the RandomOverSampler from the imbalanced-learn library [10],
mitigating model bias towards the majority class. Lastly, categorical variables were
encoded using two techniques, namely LabelEncoder and One-Hot Encoding. While
LabelEncoder converts each category into a unique integer, One-Hot Encoding
transforms each category value into a new column and assigns a binary value of 1 or
0.
2.3 Interaction

For the interaction effects, a combination of hierarchical clustering and conditional
entropy was employed to explore the interaction among parameters in predicting
diabetes with severity. Hierarchical clustering, a method of cluster analysis, was used
to build a hierarchy of clusters, visually represented by a dendrogram. This tree-like
diagram, when combined with a heatmap, heatmap's color gradient, ranging from red
to blue, was determined by the conditional probabilities, effectively illustrating the
magnitude of the relationship between variables. This approach revealed hidden
patterns and dependencies that might not be readily apparent in a simple univariate
visualization.

Complementing this, conditional entropy was used to quantify the amount of
information needed to describe the outcome of a random variable given the value of
another variable. This measure was used to rank the parameters based on their
explanatory power over the variance in diabetes severity classes. A lower conditional
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entropy indicates a stronger interaction effect, as knowing the state of one variable
reduces the uncertainty of the other. With fused variable such as ‘age_BMI’ which
intuitively combines age and BMI parameters, to understand their joint influence on
diabetes severity. This approach recognizes that the impact of a single risk factor on
diabetes may change depending on the level of another risk factor.

The integration of hierarchical clustering and conditional entropy in this study
underscores the importance of exploring interaction effects in understanding diabetes
risk factors. By revealing the complex interplay among risk factors, this approach
provides a more nuanced understanding of diabetes risk, which can inform more
effective prevention and treatment strategies. This research serves as a valuable guide
for healthcare professionals and patients, highlighting the most significant factors to
monitor in managing diabetes risk.
2.4 Prediction Algorithms

In this study, several machine learning algorithms was employed, including CatBoost,
an algorithm specifically designed to handle categorical variables, and Deep Neural
Networks (DNNs), which are capable of modeling complex non-linear relationships.
Various tree ensemble methods such as Random Forest, LightGBM, and XGBoost are
also used. Random Forest operates by constructing multiple decision trees and
outputting the class that is the mode of the classes or mean prediction of the
individual trees. LightGBM and XGBoost are gradient boosting frameworks that use
tree-based learning algorithms, designed to be efficient and capable of handling large-
scale data. These algorithms were chosen for their proven effectiveness and versatility
in handling various types of data and predicting complex outcomes.

3 Results and Discussion

3.1 Algorithm Prediction

The prediction results varied significantly between the two datasets shown in Table 2.
For Dataset A, accuracy rates ranged from 38.98% to 51.22%. In contrast, the same
machine learning algorithms applied to Dataset B yielded accuracy rates between
96.5% and 100%. Notably, DNNs consistently performed better on Dataset A.
However, for Dataset B, LightGBM, XGBoost, and DNN all achieved 100%
accuracy. This suggests that with sufficiently clean data, DNNs could potentially
outperform algorithms such as XGBoost and LightGBM.

Interestingly, the accuracy rates for Dataset B did not decrease when predicting
five multi-class categories instead of binary classes. In contrast, the highest accuracy
rate for Dataset A dropped from 96% to 51.22% when predicting multi-class
categories. This indicates that with clean and sufficient data, it is possible to provide a
nuanced classification of diabetes severity without sacrificing prediction accuracy.

Table 2. The prediction performance of various algorithms on Dataset A and Dataset B.

Algorithms Dataset AAccuracy rate Dataset B Accuracy rate
CatBoost 38.98% 96.5%
Random 48.98% 97.5%
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Forest
LightGBM 44.93% 100%
XGBoost 45.70% 100%
DNN 51.22% (early stopping +

regularization)
100% (with and without early

stopping)

3.2 Interaction Effects

The significance of interaction effects is underscored by the compelling visualizations
generated in this study and corresponding results are presented in Table 3, Table 4,
Fig. 1, Fig. 2, Fig. 3 and Fig. 4. Both datasets incorporate key variables such as age,
gender, body mass index (BMI), and smoking history. Age and BMI are identified as
some of the most informative variables based on the conditional entropy ranking, a
result that is far from arbitrary. This entropy ranking is further illustrated in the
accompanying table.

The uniformity of hierarchical clustering visualizations, including dendrograms
and heat maps, across both datasets is remarkable. Several variables are intuitive and
self-explanatory, underscoring their significance in predicting diabetes. Despite the
challenges associated with data cleanliness in HbA1c and blood glucose levels, this
study suggests that variables such as age, BMI, gender, smoking history, and blood
pressure (along with related diseases) are the most informative and crucial in
predicting diabetes.

The interaction effect between two risk factors becomes evident when they are
analyzed in conjunction. From the single-variable hierarchical clustering analysis, it is
observed that subjects with high BMI, particularly those in the severely obese
category, are highly likely to have diabetes. However, when the diagnosis is
combined with BMI from Dataset B, an intriguing pattern emerges among subjects
within the same body weight category. Specifically, those not formally diagnosed are
significantly more likely to fall into the 'very poor control' diabetic group. In contrast,
individuals of the same weight group who were formally diagnosed are more likely to
be categorized into the 'poor control' and 'fair control' diabetic groups. Similarly, Age
has been consistently identified as a strong predictor for diabetes. However, within
the same age group, different BMI categories markedly influence the conditional
probability of varying diabetes severity. Each combination of risk factors offers
unique insights, shedding light on the cumulative impact these factors can exert on the
severity of diabetes. This nuanced understanding can guide targeted interventions and
inform predictive models.

Table 3. Conditional Entropy of Diabetes Given One Other Variable

Dataset A Dataset B
CE(diabetes | gender) 2.1777 1.9164
CE(diabetes | age) 2.0241 1.4775
CE(diabetes | hypertension) 2.1827 n/a
CE(diabetes | heart disease) 2.1856 n/a
CE(diabetes | smoking history) 2.1226 2.3019
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CE(diabetes | BMI) 2.1028 1.1345
CE(diabetes | blood pressure) n/a 1.2949
CE(diabetes | family history of diabetes) n/a 2.3118
CE(diabetes | diet) n/a 2.3019
CE(diabetes | exercise) n/a 2.3019
CE(diabetes | diagnosis) n/a 2.2255

Table 4. Conditional Entropy of Diabetes Given Fused Two Variables (lowest ten
conditional entropy only)

Condition Dataset A Dataset B
CE(diabetes | gender + smoking history) 2.1117 1.8984*
CE(diabetes | heart disease + BMI) 2.1004 n/a
CE(diabetes | hypertension + BMI) 2.0990 n/a
CE(diabetes | gender + BMI) 2.0940 0.7632
CE(diabetes | smoking history + BMI) 2.0565 1.0989
CE(diabetes | age + heart disease) 2.0222 n/a
CE(diabetes | age + hypertension) 2.0212 n/a
CE(diabetes | gender + age) 2.0148 1.0641
CE(diabetes | age + smoking history) 1.9892 1.4477*
CE(diabetes | age + BMI) 1.9786 0.6174
CE(diabetes | BMI + Blood Pressure) n/a 0.7778
CE(diabetes | Age + Blood Pressure) n/a 0.7632
CE(diabetes | Gender + Blood Pressure) n/a 1.0276
CE(diabetes | BMI + Diagnosis) n/a 1.0374
CE(diabetes | BMI + Diet) n/a 1.0989
CE(diabetes | BMI + Exercise) n/a 1.0989
*not lowest 10 ranking entropy but available
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Fig. 1. Hierarchical Clustering with Conditional Probability of Diabetes vs. Fused Variable
Age and BMI from Dataset A (Photo/Picture credit: Original).

Fig. 2. Hierarchical Clustering with Conditional Probability of Diabetes vs. Fused Variable
Age and BMI from Dataset B (Photo/Picture credit: Original)
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Fig. 3. Hierarchical Clustering with Conditional Probability of Diabetes vs. Fused Variable
Age and Hyperextension from Dataset A (Photo/Picture credit: Original)

Fig. 4. Hierarchical Clustering with Conditional Probability of Diabetes vs. Fused Variable
Age and Blood Pressure from Dataset B (Photo/Picture credit: Original)

4 Conclusion

This study advances the understanding of diabetes by introducing a multi-class
classification and examining the interaction effects of various risk factors. Using
conditional entropy on two distinct datasets, risk factors were ranked based on their
explanatory power, and pairs of risk factors were combined to reveal insightful
interaction effects. Hierarchical clustering, dendrograms, and heatmap visualizations
were employed to illustrate these effects, providing healthcare professionals with a
deeper understanding of how combined risk factors can exacerbate diabetes in certain
patients. Various machine learning algorithms, including CatBoost, Random Forest,
XGBoost, LightGBM, and DNN, were utilized to enhance the performance of the
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multi-class classification. The results indicate that with accurate fasting blood sugar
levels, as in Dataset B, multi-class classification can achieve similar accuracy rates to
binary classification. However, despite the large sample size of Dataset A, the
algorithms did not perform well. With clean and accurate fasting blood sugar Dataset
B performed exceptionally well, despite containing fewer than 150 samples. Future
research should focus on larger datasets with accurate fasting blood sugar and HbA1c
levels to further study the accuracy of multi-class diabetes classifications.
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