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Abstract. In the era of large models, traditional training methods can no longer 

meet the massive requirements of computing power and data sets. Using 

distributed training can alleviate this problem to some extent. However, in 

distributed training, the challenge and complexity of hyperparameter adjustment 

will increase. In order to solve these challenges, special distributed 

hyperparameter adjustment algorithms and strategies are needed to find the best 

hyperparameter combination faster. This paper proposed Learning Rate Search 

Algorithm (LRSA) to quickly determine the initial value of learning rate, which 

makes the adjustment of hyperparameter more efficient. This work analyzed the 

reason why the parallel speed of multi card data decreases is that Using data 

parallelism at a small batch size can lead to resources being mainly used for 

communication and related overhead between GPUs, resulting in lower effective 

utilization of GPUs and an increase in training duration. Furtherly, this paper 

explored the reasons for the decrease in accuracy under large batch size and used 

LRSA to improve this situation effectively. This article also proposed an 

empirical rule to determine the lower bound of batch size. Experimental results 

indicate that LRSA on several deep learning models demonstrated that they can 

improve training efficiency and accuracy. For example, LRSA was used in 

VGG16 to get a suitable learning rate so that the model has the same Accuracy 

as the smaller batchsize at a faster training speed. 
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1 Introduction 

Artificial intelligence has witnessed remarkable progress in the past few years, 

particularly in the realm of deep learning, where substantial advancements have been 

achieved. One of the most significant breakthroughs in deep learning has been the 

development of large language models like GPT-3.5 [1], It can produce text that 

resembles that of a human being and do a variety of tasks involving natural language 

processing with astounding precision. Large language models have shown exceptional 

performance in various tasks such as language modeling, question-answering, 

sentiment analysis, vision, and machine translation [2-4]. Some studies used the
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Theory of mind (ToM) task for testing, and found that the large model headed by
GPT3 seems to have a part of the mind [5]. These models have the ability to learn
from vast amounts of data, allowing them to capture complex patterns and nuances in
language that were previously impossible to achieve. However, the achievements of
these models are accompanied by a notable trade-off, which demands substantial
computational resources and expansive datasets for effective training.

In order to tackle this challenge, distributed training has become increasingly
important. In order to facilitate quicker and more effective training, distributed
training divides the training process into smaller pieces and distributes them among
several devices, such as GPUs or CPUs. The utilization of multiple devices enables a
balanced distribution of computational workload, leading to substantial reductions in
training time. Additionally, distributed training allows for larger models to be trained
more efficiently, as the computational resources can be scaled up more easily. There
are currently three mainstream solutions in distributed training. Discarding all
activation tensors in the forward propagation and recompute during backpropagation,
such as Gpipe [6]. Keeping activation tensors produced during forward propagation
directly in GPU memory, such as PipeDream [7]. Combining the above two methods
and dynamically partitioning stages, such as Vpipe [8].

In the context of distributed training, the management of hyperparameters assumes
heightened significance due to the partitioning of training data across multiple
computing nodes. This means that the complexity and challenge of hyperparameter
regulation will also increase, particularly in relation to the learning rate. Over the
years, numerous learning rate scheduling algorithms have been proposed to improve
the optimization performance of deep neural networks. These algorithms aim to adjust
the learning rate dynamically during the training process, thereby facilitating
accelerated convergence and improved generalization performance. The evolution of
learning rate scheduling algorithms can be divided into several stages. Initially, fixed
learning rates were used, which often resulted in suboptimal solutions. Subsequently,
dynamic learning rate algorithms were introduced, such as Adagrad [9], RMSProp,
and Adam [10], which, based on the gradient of the loss function or other variables,
adaptively adjusts the learning rate.

To further determine and optimize the learning rate for achieving better
performance of the model, his paper proposes an algorithm called LRSA for quickly
determining the learning rate. Furthermore, for better hyperparameter regulation, this
paper also explores the reasons for the increase in training time caused by multi card
data parallelism and the decrease in accuracy under large batch size.

2 Method

2.1 Dataset Description and Preprocessing

The dataset used in this paper is CIFAR10, which is a benchmark image classification
dataset that is commonly employed in the field of computer vision. It comprises of
60,000 color images, each measuring 32 pixels by 32 pixels, broken down into 10
classes, each containing 6,000 images.
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This paper firstly converted images into the tensor type. Subsequently, the images are
normalized so that the data ranges between [-1,1]. This can make the model easier to
learn and improve the performance of the model. Finally, the dataset was transformed
using the DataLoader function into a PyTorch dataloader object so that batching could
be used during model training and testing to speed up those processes and enhance
model performance.
2.2 CNN model

LeNet. LeNet, which debuted in 1998, is a ground-breaking convolutional neural
network (CNN) model that excelled at recognizing digit handwriting [11].
Convolutional layers, pooling layers, and fully connected layers make up the majority
of LeNet. It is distinguished by alternating between convolutional layers and pooling
layers, with a pooling layer for extracting image features coming after each
convolutional layer. The fully connected layer is used to classify the features and
output the corresponding category probability.

VGG16. The Oxford University Computer Vision Group proposed the VGG16 deep
convolutional neural network model in 2014. It is one of the most famous versions of
the VGG network, consisting of 16 convolutional layers and fully connected layers.
The main feature of VGG16 is the use of a large number of small convolution kernels,
following each convolutional layer, there is a pooling procedure, which enables the
VGG16 network to efficiently extract features from images. The model has
demonstrated exceptional performance in image classification tasks, surpassing
previous approaches on the challenging ImageNet dataset and emerging as a critical
benchmark model in the field.
2.3 Data Parallelism

Data parallelism is a distributed deep learning training method, Its fundamental
concept is to split the training data into various subgroups and give each subset a
distinct computational node to calculate, and then summarize the calculated gradients
to a central node, and update the model parameters based on the summarized
gradients. The main purpose of data parallelism is to accelerate training and improve
model performance, such as Parameter Server [12]. Specifically, the steps for data
parallelism are as follows: 1) Dividing the training dataset into multiple subsets. 2)
Assigning each subset to different computing nodes. 3) At each node, using the same
model parameters for training and calculating the gradient corresponding to that
subset. 4) Summarizing the gradients calculated by each node onto a central node. 5)
Updating model parameters based on the aggregated gradient.
2.4 Hyperparameter regulation

Hyperparameter refer to parameters that need to be specified in advance during model
training, for example, learning rate, regularization parameters, etc. The model's
performance is significantly impacted by the choice of these hyperparameters, and
different hyperparameter settings will lead to different model performance and
performance. Therefore, the optimal combination of hyperparameter can be found
through the adjustment of hyperparameter, so as to obtain better model performance.
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However, in the context of distributed training, hyperparameter tuning poses
additional challenges, primarily due to the following reasons:1) Multiple computing
nodes. 2) Communication overhead. This is also one of the reasons why multi card
data parallelism is actually slower. 3) Model complexity. 4) Long training time.
Therefore, this paper proposes a search algorithm LRSA based on normal distribution
and greedy thought, which is used for faster, automatic and higher accuracy of the
initial learning rate.
2.5 Batchsize

In deep learning, the training data set is usually divided into several batches of equal
size, which are subsequently fed to the neural network for training purposes. The size
of each batch, referred to as Batchsize, exerts a notable influence on training speed
and model stability. Larger Batchsize values tend to expedite the training process and
enhance model stability. However, a larger Batchsize also consumes more memory
and may cause overfitting problems in the model. Additionally, a bigger Batchsize
can result in a reduction in the model's capacity for generalization. On the contrary, a
smaller Batchsize can improve the generalization ability of the model, because the
data in each batch is more random, which can reduce the risk of overfitting.
2.6 Learning Rate

In deep learning, the Learning Rate is a crucial hyperparameter that regulates the step
size of the model each time the weight is changed. Although it could make the model
unstable, a higher learning rate results in a faster weight update for the model. A
lower learning rate results in a longer weight update for the model, and it may cause
the model to converge too slowly or fall into a local optimal solution.
2.7 LRSA

As the model parameters and training set size increase, the cost of manually and
empirically adjusting the learning rate also increases. Therefore, it is expected that
more effective algorithms can achieve a better learning rate (higher accuracy, better
generalization ability) with as little cost as possible. This paper proposes a lr
adjustment algorithm Learning Rate Search Algorithm (LRSA) based on normal
distribution and greedy thought shown in Algorithm 1.

According to the formula for gradient descent ��+1 = �� − �
1
� �∈�

∇� �, ��� ,

When increasing the batch size by n times, the number of parameter updates is
equivalent to a decrease of n times. Therefore, a reasonable approach is to also
increase lr by n times and use it as the starting point for searching. At the same time,
since the position near the starting point has a greater probability, it is a better lr.

� = �� × � (1)

d � = �
2�
e −�

2

2 (2)

��' = �� ± d � − �� × �i� (3)
The meaning of each letter is as follows: S: starting point, obtained from the

expansion multiple n of the original learning rate LR and batchsize, d (x): step
coefficient based on normal distribution, which is larger near the starting point S and
smaller away from the starting point S, where k is a numerical coefficient that can be
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manually adjusted (default is 0.5) lr: the updated learning rate dis: basic step (default
is 0.01)
Algorithm 1: Learning Rate Search Algorithm(LRSA)
Input：batch_size, new_batch_size,Lr
( Optional parameters: depth_max, error_max, k, distance)
Output： ��'

1. function init( batch_size, new_batch_size, lr)
2. Initialization start point � = �� × �
3. Set search parameters( such as: depth_max error_max…)
4. end function

1. function d(lr,k=0.5)

2. return Step coefficient �
2�
e −(��)

2
2

3. end function

1. function check(lr)
2. global accuracy_max
3. accuracy = execute() #get accuracy from model
4. if accuracy > accuracy_max:
5. accuracy_max = accuracy
6. if (accuracy_single - accuracy) / accuracy_single < error_max:
7. exit()
8. return True
9. return False
10. end function

1. function Lrsa(Lr,cnt)
2. if the end condition is met, exit.
3. else:
4. get Predicted Learning Rate ��' = �� ± d � − �� × �i�
5. check( ��')
6. if return True, continue searching Lrsa( ��', ��� + 1)
7. else: Return to the previous layer
8. end function

2.8 Sharp Minimum Caused by Excessive Learning Rate

Although increasing batch size can greatly accelerate training speed, it also has some
negative effects. According to research [13], whereas small batch sizes tend to
converge to flat minimums, which are better at generalization, high batch sizes tend to
converge to sharp minimums shown in Fig. 1. Therefore, blindly increasing the batch
size is not advisable, it is necessary to choose a more moderate batch size. Therefore,
finding a suitable lower bound for batch size has become a valuable issue.
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Fig. 1. An illustration of Flat and Sharp Minima. The loss function's value is shown on the Y-
axis, while the parameters' values are shown on the X-axis (Photo/Picture credit: Original).

3 Results and Discussion

3.1 The Investigation and Discussion of Multi Card Data Parallelism
Technology

Usually, data parallelism can significantly accelerate training, but in the above
experiments shown in Table 1, it was found that after data parallelism, the training
time actually increased significantly. This may be due to the following reasons: 1)
Communication bottleneck: When multi card data is parallel, each card needs to send
the calculation results to other cards for gradient updates. If the communication speed
is slow, communication time may become a bottleneck, leading to an increase in
training duration. 2) Improper adjustment of hyperparameter: when multi card data is
parallel, the optimal value of hyperparameter may change. If the hyperparameter is set
improperly, the training duration may increase.

Table 1. Testing VGG16 on RTX3090 with different number(DP: Data Parallel,SC: Single
Card)

Type Memory-
Usage_1

Memory-
Usage_2

Peak
Volatile
GPU-Util_1

Peak
Volatile
GPU-Util_2

Accuracy Training
Time

DP 7858MiB/
24576MiB

2510MiB/
24576MiB 58% 50% 79% 329.27s

SC 2930MiB/
24576MiB / 66% / 80% 143.11s

The possibility exists that the employed batch size is inadequate, thereby
engendering a considerable extent of communication overhead and GPU-switching
overhead. Consequently, such inefficiencies contribute to a notable escalation in the
duration required for training. In order to substantiate this conjecture, a series of
experiments were undertaken shown in Table 2.
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Table 2. Testing VGG16 on two RTX3090 sheets with different batch sizes

Batch
Size

Memory-
Usage_1

Memory-
Usage_2

Peak
Volatile
GPU-Util_1

Peak
Volatile
GPU-Util_2

Accuracy Training
Time

128 3212MiB /
24576MiB

2898MiB /
24576MiB 66% 55% 78% 167.9s

256 3542MiB /
24576MiB

3452MiB /
24576MiB 73% 66% 74% 98.9s

512 4862MiB /
24576MiB

4700MiB /
24576MiB 80% 74% 71% 67.5s

1024 7332MiB /
24576MiB

7184MiB /
24576MiB 85% 81% 63% 61.49s

2048 12392MiB /
24576MiB

12454MiB /
24576MiB 91% 88% 57% 59.52s

4096 22678MiB /
24576MiB

22652MiB /
24576MiB 100% 100% 40% 61.68s

From the experimental data, it can be seen that:
1) When the batch size reaches 256, its training time is significantly lower

than that of a single card. When the batch size is 2048, the training duration
reaches its minimum of 59.525s.

2) As the batch size continues to increase, although the training duration
continues to decrease, the degree of the decrease continues to decrease.

3) And when the batch size reaches 4096, its training duration becomes longer
compared to the smaller batch size of 2048, and its Peak Volatile GPU
Util_ 1, 2 achieved 100%

4) As the batch size increases, accuracy continues to decrease

The possible reasons for the above phenomena are as follows: The possible reason
for 2) is that communication and other expenses are gradually increasing, and it is
about to reach the cost boundary of distributed training; The possible reason for 3) is
that the batch size is too large and memory is tight, resulting in one communication
being split into multiple times, which increases the training time compared to
situations where memory is relatively loose ��+1 = �� − �

1
� �∈�

∇� �, ��� , where n

is the batch size and n is the learning rate [9].When the batch size increases, it is
equivalent to fewer parameter updates, so the model is likely to be in an underfitting
state, leading to a decrease in accuracy. Therefore, this situation can be improved by
increasing the gleaning rate and increasing the number of epochs.
3.2 Investigation of the Influence of Batch Size in Accuracy

Related experimental results are presented in Table 3, Table 4 and Table 5. Although
increasing the number of epochs can slightly improve accuracy, it quickly enters a
bottleneck, which is likely caused by low learning rate. Meanwhile, Hoffer’s research
[14] demonstrated that the decrease in performance of large batch sizes is due to
insufficient training time and is not essentially a problem with batch size.

An Investigation into Hyperparameter Adjustment and Learning             159



Table 3. The impact of different epochs on Accuracy on two RTX3090 sheetswith batch
size=2048 and learning rate=0.001

epoch Accuracy Training Time
10 56% 57.63s
20 61% 114.64s
30 61% 175.88s
40 61% 224.13s

Table 4. The impact of different learning rate on Accuracy on two RTX3090 sheets with batch
size=2048 and epoch=10

learning rate Accuracy Training Time
0.001 56% 57.63s
0.005 68% 64.46s
0.01 73% 60.8s
0.015 77% 64.07s
0.02 78% 60.90s
0.025 78% 60.02s
0.03 79% 58.64s
0.04 80% 59.22s
0.06 80% 60.99s

Table 5. The impact of different learning rate on Loss on single RTX3090 with batch
size=2048 and epoch=10

learning rate loss
0.0001 2.177
0.001 1.074
0.01 0.173
0.03 0.132
0.04 0.128
0.06 0.169
0.1 0.394
1 nan
After continuously improving the learning rate, accuracy has shown a significant

increase. When the learning rate is between 0.4 and 0.6, the accuracy achieved by the
model is already the same as that of a single card. The loss will progressively drop
and then climb. When the learning rate is too high, a gradient explosion event will
occur. Therefore, the optimal learning rate should be selected from the area with the
smallest loss.
3.3 Investigation of the Lower Bound of Batchsize

On multiple models, the results are roughly presented shown in Table 6, Table 7,
Table 8 and Table 9: when the Average Peak volatile GPU-Util is similar to the Peak
volatile GPU-Util of a single card, its training time is also similar to a single card.
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Table 6. Testing the training time of VGG16 under different GPU-Util on two RTX3090 (data
parallel)

Batch
Size

Peak Volatile
GPU-Util_1

Peak Volatile
GPU-Util_2

Average Peak Volatile
GPU-Util

Training
Time

128 66% 55% 60.50% 167.9s
144 67% 60% 63.50% 144.32s
160 69% 62% 65.50% 131.85s

Table 7. Testing the training time of VGG16 under different GPU-Util on single RTX3090

Batch
Size Memory-Usage Peak Volatile

GPU-Util Training Time

64 2930MiB/24576MiB 66% 143.11s

Table 8. Test the training time of LeNet under different GPU-Util on two RTX3090 (data
parallel)

Batch
Size

Peak
Volatile
GPU-Util_1

Peak Volatile
GPU-Util_2

Average Peak
Volatile GPU-Util

Training
Time

64 6% 4% 5% 153.46s
80 6% 5% 5.50% 141.26s
96 6% 5% 5.50% 137.3s

Table 9. Test the training time of LeNet under different GPU-Util on single RTX3090

Batch Size Memory-
Usage

Peak Volatile GPU-Util Training Time

64 2086MiB /
24576MiB

6% 132.98s

Henceforth, it is plausible to employ the GPU-Util metric as a criterion for
determining an appropriate batch size selection. Specifically, it is advisable to opt for
a batch size that surpasses the lower threshold when the Average Peak Volatile GPU-
Util exceeds the Peak Volatile GPU-Util observed on a single card. Subsequently,
additional adjustments can be made to refine the chosen batch size accordingly.
3.4 Investigation of Dynamically Adjusting the Initial Value of Learning Rate

(LRSA)

From Table 10, it can be seen that LRSA quickly selected a better LR. Due to the
maximum accuracy error between the selection and a single card not exceeding 1%,
LRSA will continue to try to search for better values, and ultimately obtain a
LR=0.03236 that is equivalent to a single card accuracy.
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Table 10. Test the Accuracy and Loss of VGG16 using LRSA (error_max=0.01,
depth_max=3) on two RTX3090

Predicted
Learning
Rate

Accuracy Loss Training Time

0.032 79% 0.144 65.29s
0.03399 79% 0.138 64.46s
0.03598 79% 0.136 64.8s
0.03798 78% 0.162 64.07s
0.03421 79% 0.139 63.25s
0.03236 80% 0.121 62.43s

4 Conclusion

With the increasing application of large models in the field of AI, the demand for
computing power and data sets is also increasing. Through parallel processing,
distributed training systems can quickly train large models and can efficiently utilize
computing resources. However, tuning of hyperparameters in distributed training
systems is more difficult. In order to deal with this problem, this paper proposes a
dynamic learning rate search algorithm to obtain a better initial value. In the
meanwhile, this paper also explored the reasons for the increase in training time
caused by multi card data parallelism, explored the reasons for the decrease in
accuracy under large batch size, and proposed a method for determining the lower
bound of batchsize. This article verifies the above reasons in LeNet and VGG16 and
uses LRSA in VGG16 to get a suitable learning rate so that the model has the same
Accuracy as the smaller batchsize at a faster training speed. In the future, it is planned
to combine LRSA with other dynamic learning rate adjustment algorithms such as
Adam, so that the model can achieve higher accuracy and training speed.
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