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Abstract. Offline Reinforcement learning (RL) uses the collected data to train 

agents without interaction with the environment. However, due to the incon-

sistent distribution between the data set and the real world, the training samples 

collected in the real environment cannot be well applied to offline RL. In this 

paper, a model-free offline RL method is designed and is named Stable Con-

servative Q-Learning (SCQL). It uses a similar approach as Conservative Q-

Learning (CQL) to limit the Q estimation of out-of-distribution (OOD) actions. 

The limitations on the estimation of OOD action is eliminated by combining Var-

iational Autoencoders (VAE) with an estimation network that is trained without 

using OOD actions. It adopts a value-constrained approach to conservatively es-

timate the Q value, ensuring the stability of the algorithm's results while not af-

fecting its generalization ability. Experimental results demonstrate that SCQL 

achieves conservative Q-function estimation while maintaining superior stability 

and generalization compared to baseline offline RL algorithms, including CQL. 

The proposed method effectively mitigates the negative impact of data distribu-

tion mismatch in offline RL, leading to improved performance and robustness.   
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1 Introduction 

Reinforcement learning continuously strengthens the selection of high-return strategies 

to achieve the optimal goal through the reward signals obtained by the machine through 

interaction with the environment [1]. Currently, it has been widely used in robot control, 

gaming, autonomous driving, financial analysis, and other fields [2]. However, before 

the agent training obtains a better strategy, interaction with the environment may cause 

huge risks, such as the wrong estimation of stock price fluctuations and the possibility 

of accidents caused by autonomous vehicles. On the other hand, Reinforcement learn-

ing needs a lot of data for training. As a paradigm of online learning, Reinforcement 

learning is inefficient and time-consuming in online data sampling. Consequently, of-

fline Reinforcement learning is introduced to avoid such problems.  
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Agents using offline reinforcement learning do not interact with the environment
but only use collected datasets for training. Fig.1. shows the framework of offline
reinforcement learning. Inspired by off-policy reinforcement learning, researchers
believe that offline reinforcement learning can be a good way to learn strategies from
datasets, but this is not the case. S Levine et. al. collects the trajectory data generated
by intelligent agents trained under online algorithms [3]. The performance of the
agent is very poor by using such data. Due to the lack of interaction with the
environment, an error named “extrapolation error” occurs in policy evaluation during
the training process, which makes the online learning experience cannot be directly
transferred to offline Reinforcement learning. The reason for the extrapolation error is
the distribution shift. The offline dataset used for training cannot contain all the data
in the real world, thus inevitably resulting in inconsistent data distribution issues. In
this case, the policy obtained from the offline dataset is only effective for the action-
state pairs that exist in the dataset. Since the training goal is to maximize the value Q,
when the training policy accesses actions that do not exist in the dataset, it will
overestimate the value of Q. Incorrect estimation can make the selection of actions
fall into areas that are not visible in the dataset. Due to the inability to evaluate the
true value of these actions in the real environment, actions with low value may be
selected, resulting in a decrease in training results.

Fig. 1. Offline RL and Extrapolation error (Photo/Picture credit: Original).

To eliminate extrapolation errors, researchers have conducted extensive research.
The current methods can be divided into two types: model-based methods and model-
free methods. Model-based methods reduce extrapolation errors by constructing
models and generating more training samples [4]. Although it performs better than
model-free methods, it has high computational complexity and is greatly limited by
the model. The model-free methods directly operate on the update function, which has
a wider range of applications [5]. However, although some current optimization
methods can significantly address the impact of extrapolation errors, they cannot
guarantee the stability of training results.

In this paper, SCQL with the Actor-Critic structure is designed for offline RL. It
adopts a value-constrained approach to conservatively estimate the Q value, ensuring
the stability of the algorithm's results while not affecting its generalization ability. A
VAE [6] and a State-Action-Reward-State-Action (SARSA) [7] style value function
to construct penalty terms so that the penalty results are not too conservative.
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2 Related Works

 Model-free Offline Reinforcement Learning

Model-free offline RL does not require model construction, making it more flexible
and efficient. The existing model-free methods are mainly divided into three types
[3]: policy constraints, value function constraints, and uncertainty methods. The
method based on policy constraints reduces extrapolation errors by restricting the
generation of OOD actions that creates by policy function. Typical methods include
Batch-Constrained deep Q-learning (BCQ) [8]. Value constrained methods often limit
the estimation of the Q function, such as CQL [9]. Uncertainty methods construct a
sufficiently robust Q function to maintain a relatively efficient estimation of OOD
actions.

 Generative Models

The generative model generates corresponding output data for the given input data.
By analyzing the distribution of inputs, generative model can reconstruct samples
which is similar to inputs. Currently, popular generative models include VAE,
Generative Adversarial Networks (GAN), flow-based model, and diffusion model.
VAE learns the distribution of inputs and reconstructs them through the decoder-
encoder structure. GAN includes a generator and a discriminator. It generates realistic
data samples through mutual confrontation and training. The flow-based model uses
reversible transformations to construct the probability density function of the data.
The diffusion model simulates the evolution process of data and generates samples by
the reverse model.

3 Stable Conservative Q-Learning

The most direct way to solve the overestimation problem caused by extrapolation
error is to directly restrict the Q function. Kumar. A et. al. proposed CQL in 2020 to
solve the extrapolation error problem [9]. It introduced limitations to the Q value of
the actions that are beyond the dataset. As shown in Fig.2, CQL constrains the Q
value of actions beyond the support of the dataset to a relatively reasonable value. The
critic network with penalty term is updated as：

����� = �(���~�, ��~� ��\�� [��(��, ��)] − ���~�, ��~� ��\�� [��(��, ��)]) +
1
2
� ��,��.��+1,�� ~�, ��+1~� ·\��+1 [��(��, ��) − (�� + � ����=1,2��� ��+1, ��+1 ]2 (1)

where μ is the real policy and π is the policy the algorithm learned. The first term of
the loss function is the core of CQL, which contains a penalty term and a
compensation term. The penalty term limits the Q value of OOD actions while
compensating the actions in the dataset.

However, in some cases, CQL's estimate of Q may be too conservative. This is
because CQL only guarantees that the valuation is lower than the true value, but there
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may be situations where it is too low. The overly conservative estimation depresses
the generalization of the algorithm. When estimating the Q value of actions beyond
the area that the dataset supports, significant errors occur and the algorithm becomes
unstable.

Fig. 2. The constriction on Q function introduced by CQL(Photo/Picture credit :Original).

Lyu et al. proposed Mildly Conservative Q-Learning(MCQ) which can mildly
conservatively estimate the Q value [10]. MCQ could prove sufficient conservatism
while improving the generalization of CQL. It assigns appropriate pseudo-Q values to
OOD actions by training VAE to avoid overestimation problems. The previous
model-free method BCQ used VAE to generate data that limited actions not beyond
the dataset, but the effectiveness was often not as good as the method of value
constrained methods. VAE is divided into two parts: encoder and decoder. Encode is
used to recognize inputs, and decoder is used to reconstruct inputs. VAE evaluates the
effectiveness through evidence lower bound (ELBO) loss which has two parts. The
first part reconstruction loss is used to calculate the similarity between the generated
data and the original data, while the second part Kullback-Leible divergence loss is
used as an additional loss to guarantee the similar distribution. ELBO can be
calculated as:

���� = � 1
� �=1

� � − � 2 + �( − 0.5) �=1
� 1 + log ��2 − ��2 − ��2)�� (2)

where μ and σ is the mean value and standard deviation of input x respectively. y is
the output that reconstructed by decoder.
Generative Value Constraint: Inspired by MCQ, the behavior policy is reconstruct

by using VAE. The key idea is that VAE can be trained to generate actions that don’t
beyond the area the datatset supports. In this way, OOD actions can be converted into
actions that conform to the distribution of the dataset. Although some errors may still
occur because the next step state used for generation is not used in training, the results
have remained relatively effective. This is much more conservative than directly
sampling OOD actions and estimating them. VAE is optimized by the following
function.

���� = �(�,�)~�, �~�(�,�)[(� − �(�, �))2 + ��(�(�, �), �(0, �)] (3)
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where D and E represent the decoder and encoder of VAE. z is the output of encoder
and (s,a) is the state action pairs in dataset.
Meanwhile, a SARSA-style value function calculation method is adopted .
Specifically, modeling a state value function network V separately. To avoid
accessing OOD actions, this value function network directly estimates the state values.
In the general computing process, target value � = �� + ����� = 1,2���(��+1, ��+1) .
Since ��+1 is generated by an actor network, it may be an OOD action. The OOD
actions can be avoided to join the computing process by using V network to � = �� +
��(��+1). The V network is optimized as follows

�� = �(�,�)~�[(0.9(1 − ��) + 0.1��)(�(�) − ����=1,2���(�, �)2 (4)

where ��� is the estimation of target_critic network. �� is defined as:

�� =
1, �(�) − ����=1,2���(�, �) > 0
−1. �(�) − ����=1,2���(�, �) < 0; (5)

By combining VAE and V network, the penalty term is described as：

�� = ����,��+1, �~�, �'~���(�)[(��� �' ���(��(��, �
'))� − (� + ��(��+1)] (6)

where �' is the action generated by VAE, (��, ��+1 , �) is (action, next action, reward)
from dataset.
SCQL Algorithm: SCQL adopts an Actor-Critic structure like CQL. The Actor-

Critic structure has a fast rate of convergence and updates through value function.
Thus, the designed generative value constraint could apply to it. SCQL consists of
seven networks, including two Citric networks, 2 target Citric networks, one actor
network, one VAE generator, and one state value network. Fig. 3 shows the
computing process of SCQL. And the critic network in SCQL is updated as：

Fig. 3. The framework of SCQL(Photo/Picture credit :Original).

�� = �� +
1
2� ��,��.��+1,�� ~�, ��+1~� ·\��+1 [��(��, ��) −

(�� + �(����=1,2 ���(��+1, ��+1))]2 (7)
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where Lp is the value function constraint in this work. Table 1 is the pseudo code of
SCQL.

Table 1. Algorithm 1: Stable conservative Q-learning

Algorithm 1: Stable conservative Q-learning
Input: (st, at, rt, st+1) in buffer pool D.
1: Initialize value network V, critic network ��1, ��2, VAE network and actor

network π with random parameters.
2: Copy parameter from critic network ��1 , ��2 to target critic network

��1 , ��2
3: while t∈(1,K) do
4: Train VAE by equation 3
5: Train value network V by equation 4
6: Compute target value: � = �� + �(����=1,2���(��+1, ��+1) −

�����(��+1|��+1), ��+1 = �(·|��+1).
7: Compute generated value: �� = �� + ��(��+1)
8: Update critic network by equation 6
9: Update actor network: �: = �����~�, �~�(·|�)[����=1,2���(��, ��) −

�����(·|��).
10: Update target critic network: �� = �� + (1 − �)��, � = 1,2
11: end while

4 Experiments

4.1 Backgrounds

Environment: OpenAI Gym is a toolbox for developing and comparing RL
algorithms. A classical continuous control environment named “Pendulum” is chosen
to conduct the experiments.
Dataset: The Soft Actor Critic(SAC) algorithm is used to train the agent in the

Pendulum environment [11]. The total epoch of training is 200. The data during
training is collected as an offline dataset. The total data in the whole dataset is 20000.
Fig.4. depicts the returns of off-policy reinforcement learning based on SAC. It can be
seen that the off-policy approach can learn excellent strategies, but there are still
unstable fluctuations in the 180th epoch.
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Fig. 4. Returns of SAC that is trained for dataset(Photo/Picture credit : Original).

Settings: The experiments are conducted on the virtual workstation with an 8G
memory Apple M1 CPU. Learning rate(lr): For the network related to actions like
actor network and VAE, lr is set to 0.0003. For value network and critic network
which is related to Q value, lr is set to 0.003.

4.2 Experiment Results

Firstly, the results of unoptimized algorithm SAC, model-free baseline method CQL,
and SCQL in an offline environment are compared . Fig.5. compares the returns of
SCQL with SAC and CQL respectively. In the experimental environment of this
paper, all three algorithms train 300 epochs, with each epoch taking 500 steps. SCQL
can consistently achieve good results after convergence. Compared with SAC, SCQL
has a slower rate of convergence, which requires 50 epochs for stable convergence.
However, the results of SCQL are more stable and there are fewer burrs on the curve.
Compared with CQL, although the final results of SCQL and CQL are very similar, it
can be seen from the curve that CQL occasionally shows very poor performance at
some points, which also proves the stability of SCQL.

Fig. 5. Returns of SCQL, SAC and CQL(Photo/Picture credit : Original).

Furthermore, SCQL has better results when compared with the model-based offline
reinforcement learning method (MOReL) [12]. The result of SCQL and MOReL is
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shown in Fig.6. In the first 30 epochs, the fluctuation of MOReL is much smaller than
that of SCQL. However, after entering the convergence stage, the performance of
SCQL is significantly superior to that of MOReL. The worst result for SCQL is
around -250, while the worst result for MOReL is -700. And the mean result of SCQL
is -200, which is better than the -400 of MOReL. The incomplete model built by
MOReL makes its results lower than SCQL. If a superior model can be established,
MOReL can achieve very good results. However, establishing a superior model will
incur additional computational overhead. Compared with MoReL, SCQL can achieve
better results and efficiency than MOReL without spending a lot of resources.

Fig. 6. Returns of SCQL and MOReL(Photo/Picture credit : Original).

To further investigate the stability of SCQL, the relationship between the rewards
obtained by the algorithm and the number of training epochs is investigated. In this
experiment, SCQL is trained for 100, 300, and 500 epochs respectively. It can be
observed (Fig. 7) that as the number of epochs increases, the rewards obtained by
SCQL are relatively stable and do not fluctuate significantly. The algorithm
converges quickly and remains stable after training for 50 epochs. This is because the
use of VAE ensures that the generated actions have a similar distribution to the
actions in the dataset and do not deviate too much. And using the V network to avoid
the use of OOD actions generates relatively accurate estimates. The combination of
the two modules as punishment term can not only suppress overestimation of OOD
actions, but also ensure that the suppression is not too conservative, which affecting
universality and causing instability.
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Fig. 7. Relationship of episodes and returns of SCQL(Photo/Picture credit : Original).

5 Conclusion

In this paper, an offline RL method named SCQL is proposed to solve the problem in
offline reinforcement learning. SCQL has two improvements. Firstly, SCQL imporves
the update function of CQL, which makes it can maintain excellent performance
while making the algorithm's results more stable. It is because that the value
constraint method of CQL is effective but overly conservative. And this kind of
constraints affect the generalization of the algorithm. Secondly, a VAE and a value
function network are combined to construct penalty term and estimate the value of Q
relatively conservative. In this work, three experiments are conducted to test the
effectiveness of SCQL. In the first two experiments, the experimental results of
SCQL are compared with the results of the model-free baseline method CQL and the
model-based baseline method MOReL respectively. It shows that SCQL can achieve
better performance in the rate of convergence and final results. In addition, the third
experiment shows that the convergence effect of SCQL is very stable and will not
change significantly with the increase in training times. This indicates that the value
constraint of SCQL is effective, as it reduces the over-conservative penalty for OOD
action and enhances the stability of the algorithm. Of course, the scenarios for the

Stable Conservative Q-Learning for Offline Reinforcement Learning             183



algorithm testing in this work are still relatively limited at present. Thus, more
experiments will be conduct to improve SCQL in the next works.
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source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
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