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Abstract. Recently, thanks to the rapid development of deep learning, there are 

many methods to remove shadows in images by using generative adversarial 

networks. Most of them can learn the relationship between different domains, 

like shadow and shadow-free areas, to transform the shadow areas into areas with 

no shadow. However, due to inaccurate shadow shapes or masks obtained, these 

methods can not lead to a better performance in the shadow image and even create 

more artifacts. To solve these problems, the authors propose IPSM-GAN, a new 

framework that learns to remove shadows in images by formulating cycle-

consistency constraints and the guidance of mixed shadow masks. The mixed 

shadow mask generation method can accurately capture the shape of shadows. 

Also, the method can be a guide to the learning of the framework, which makes 

IPSM-GAN achieve better performance in removing shadows. Extensive 

experimental results verify the effectiveness of the proposed method, which can 

provide some new insights into the research field of shadow removal. 
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Shadow is a degrading phenomenon caused by poor imaging conditions. In most
cases, a shadow is a darker area created by a light source being blocked by an opaque
object. The shadow will weaken the optical information in the image, reduce the
accuracy and clarity of the image, and make the amount of information reflected by
the target missing or disturbed. Shadows are commonly found among digital images.
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As a result, the image information loss caused by shadow will seriously affect various
analyses and applications of images, and adversely affect the subsequent works like
feature extraction, image matching, and image processing. Therefore, it is very
necessary to detect and process the shadow areas in the image, which can be
beneficial to the subsequent image processing.

In earlier times, some edge detection algorithms based on detecting gradient, such
as the Canny edge detection algorithm1] and Sobel-Feldman algorithm2], were used
to detect the contour of the shadow and select the shadow areas. These methods were
suitable for detecting the obvious edges in the image. After obtaining the edges of the
shadow areas, additional steps are required to distinguish the shadow areas from other
areas, such as foreground areas and background areas. In the past 15 years, with the
advent of convolutional neural networks (CNNs), their powerful feature
representation capabilities make it possible to capture various information in images
accurately. As a result, the shadow detection and processing methods related to
convolutional neural network has better performance than the traditional image
processing algorithms in some situations. For example, in Khan’s works [3],
convolutional neural networks were used to detect shadow ares in images. Later,
generative adversarial network (GANs) based on unsupervised learning were also
adopted to remove shadows. During the training of the generative adversarial
network, the generators and discriminators of the networks are opposed to each other,
and gradually acquire better performance. For example, in ST-CGAN [4], Wang et al.
respectively used 2 generative adversarial networks for detecting and removing
shadow areas of images. Further, Cycle-Consistent Adversarial Networks
(cycleGAN) [5], a network which could learn mappings between different domains
from unpaired data [6], was also applied to remove shadow areas. In
Mask-ShadowGAN7], Hu et al. used shadow masks to guide the training of
Cycle-Consistent Adversarial Networks, and used the network to remove the shadow
areas of images . All the above methods based on generative adversarial network need
to detect shadow of input images firstly, generate the shapes or masks of shadow, and
then adopt neural networks to remove the shadow. Most of the methods have tried to
improve the accuracy of shadow masks as much as possible. However, those methods
are still difficult to obtain accurate shadow masks in some images, such as images
with complex shadow edges or images with a large number of tiny shadow areas.
Inaccurate shadow masks can finally cause the network to struggle to perform as
expected when removing the edges of shadows or discrete small shadow areas.
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In this thesis, to solve the problem, the author puts forward a shadow removal
framework named IPSM-GAN based on cycleGAN and Mask-ShadowGAN. The
framework can learn from shadow masks generated by a mix shadow generating
method and remove the shadow. The mix shadow mask generating method produces
masks in two methods. When generating a shadow mask, a global thresholding
method (Otsu’s algorithm) [8] is used for obtaining the main body part of the shadow
areas to generate the first shadow mask. Then, a adaptive thresholding method [9] is
used for capturing more details at the edges of the shadow or some small shadow
areas to generate another shadow mask. After that, the two masks are blended to
generate a new shadow mask, which will guide the network learn more information in
the shadow and obtain better performance in subsequent shadow removing.

2 Related Work

In 2014, Khan et al. proposed a method, which can detect shadow by using
convolutional neural networks and adopt a Bayesian model to remove the shadow
[10]. Later, Methods have since emerged using unsupervised generative adversarial
networks to achieve the same goals. For Instance, as Wang et al. proposed, two
generative adversarial network were respectively trained for detecting and removing
shadows. In 2017, a network named Cycle-Consistent Adversarial Networks, i.e.
CycleGAN emerged. To learn mappings between different domains, CycleGAN used
two GANs to formulate cycle-consistency constraint. Based on CycleGAN, Hu et al.
used unpaired dataset and shadow masks generated from shadow image to guide the
network to learn the mappings between different styles of images, and achieved the
shadow removal in images.

All of the above methods required identifying the shadow areas in images or
getting the masks of shadow areas at first. Failure to accurately acquire the shadow
area in the image will result in poor performance of shadow removal. In most cases,
the central part of the shadow can be obtained very accurately by binarizing the image
with a global threshold. However, in the areas where the shadow and bright regions
intersect, the shadow edges can not be captured by the global thresholding algorithm
because the gray values of the edges are close to other areas. Therefore, in the
IPSM-GAN, the author proposes that the using of two methods to generate shadow
mask by calculating the global threshold and the adaptive thresholds. The results of
the two methods are added together to acquire the accurate shadow mask.
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3 Method

As shown in Figure 1, the whole framework of IPSM-GAN is composed of three
kinds of module, which are generator, discriminator and mask generator. Figure 1
illustrated the learning steps of IPSM-GAN. The framework can also be devided into
two main parts, the first part learns from images with shadow. Firstly, the shadow
image P1 is the input of mask generator Gm and generator Ga . Two generators
will generate a shadow mask M1 and a unshaded image P2 of the source image,
respectively. Then , the mask M1 and image P2 were sent to generator Gb to
generate a rebuilt shadow P3 . The mask M1 will be stored in a first-in-first-out
queue and used in the learning from shadow-free images. Another part of the
framework learns from shadow-free images. A real unshaded image P4 and a
shadow mask Mr randomly selected from the mask queue are fed into the generator
Gb and a shadow image P5 is produced. Then, image P5 will be recover to a
shadow-free image P6 by generator Ga.

Fig. 1. The framework of IPSM-GAN images (Photo/Picture credit: Original)

3.1 Generators and Discriminators

In the framework, the generator Ga can convert a shadow image to a unshaded
image, and the structure of this module is derived from the generative network
designed by Johnson11]. The input of the generator Ga are 3 channels of the shadow
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image. To extract features, the image goes through a three-layer convolutional neural
network at first. Subsequently, there is a nine-layer residual network in the generator
Ga , which transforms the style of the image (from shadow to shadow-free). Then,
with 2 layers of deconvolution and one layer of convolution operation, the image is
rebuilt to its original size. The structure of the generator Gb is almost the same as the
structure of Ga . The difference between the two generators is that the input of
Generator Gb needs 4 channels, and the additional channel is a shadow mask
randomly selected from the mask queue. Shadow image discriminator Db and
shadow-free image discriminator Da are both based on PatchGAN12]. They share
the same network structure. With a 5-layer convolutional neural network, the
discriminators can distinguish if the input image is real or not.
3.2 Mask Generator

As mentioned in the previous sections, no matter in the learning from shadow or
shadow-free images, the generator needs to obtain an accurate shadow mask firstly. In
this thesis, the network is trained by using unpaired datasets, which make it difficult
to get shadow masks directly. In Mask-ShadowGAN, Hu et al. used the OTSU
algorithm to acquire the global threshold of the image, which enable the generation of
binary shadow mask of the shaded image. This method has some limitations. First of
all, for some high-frequency areas like shadow edges, a mask generated by using
global threshold can not include these areas, and a lot of details of shadow are lost.
Secondly, after several iterations of the model, artifacts will appear on the edge of
removed shadows, which means that the removal performance on the shadow edges is
not as good as the center areas. Therefore, the author proposes an improved shadow
mask generation method.
Figure 2 shows how the mask generator produces a shadow mask. Firstly, the

generator Gm calculates the difference between the original shadow image P1 and
the generated unshaded image P2. Then, Chow-Kaneko adaptive threshold algorithm
is adopted to compare the value of each pixel with the average value of the
neighborhood. If the value of the pixel exceeds the average value, the pixel is marked
as 1, that is, the shadow, otherwise it is marked as 0. Gm generates the mask Ma by
this way. At the same time, OTSU algorithm is used for calculating the global
threshold t of the image, and t is key to binarize the image and generate mask Mo .
The mask Ma and Mo are then added to generate the shadow mask M1 of the
image P1. The mixed shadow mask can capture more details on the edge of shadows
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or some smaller shadows, which means the accuracy of the mask-generation is
improved.

Fig. 2. The generating steps of shadow mask (Photo/Picture credit: Original)

3.3 Loss Function

The loss of IPSM-GAN can be devided into three parts, which are identity loss13],
adversarial loss and cycle consistency loss. During training, the framework adopted
adversarial loss to optimize the generators and the discriminators of two kinds of
image. When the framework learns from shadow images, as shown in Figure 1, the
generator Ga uses the shadow image P1 to generate the unshaded image P2. Then,
the discriminator Da distinguishes whether the image P2 is a real unshaded image:

Da(Ga(P1))) = Is the shadow-free image real or fake？ (1)
The generator Ga and the discriminator Da are optimized by using the following
objective functions:

LossGANa (Ga,Da) = εP4∼Pdata(P4)[log(Da(P4))]

+ εP1∼Pdata(P1)[log(1 − Da(Ga(P1)))] (2)

In the formula, ε represents the error. P4∼Pdata(P4) and P1∼Pdata(P1) denote that
real unshaded image P4 and the shadow image P1 , following the data distribution
Pdata , are respectively selected from the datasets of unshaded images and images
with shadow. Adversarial loss is calculated by the Smooth L1 loss function [14],
rather than L2 loss, which can reduces the influence from outliers.
Similarly, when it is learning from images have no shadow, the generator Gb can
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converts the unshaded image P4 to a shadow image P5 by randomly acquiring the
mask Mr from the shadow mask queue. Then, the discriminator Gb will determine
if the image P5 is a real shadow image:

Db(Gb(P4,Mr))) = Is the shadow image real or fake？ (3)
To make the generator Gb and discriminator Db be further optimized, adversarial
loss is also applied:

LossGANb (Gb,Db) = εPb∼Pdata(Pb)[log(Db(Pb))] + εPa∼Pdata(Pa)[log(1 −

Db(Gb(Pa,Mr)))] (4)
In the learning of the two kinds of images, the produced images will be rebuilt to their
original style. The generator Gb uses the mask M1 to convert the shaded image P2
to the shadow image P3:

P3 = Gb(P2,M1) (5)
Where the mask M1 , generated by using the mask generator Gm , is a binary
mapping of the shadow areas of the image P1:

M1 = Gm(P1) (6)
The author expect the recovered shadow image P3 to be as similar as possible to the
original shadow image P1 , and cycle-consistency constraint are used to optimize the
generators Ga and Gb.

Losscyclea (Ga,Gb) = εP1∼Pdata P1 [||Gb Ga P1 ,M1 − P1||1] (7)

Similarly, in another part of the framework, the generator Ga converts the image P5
to the unshaded image P6 . The author also uses cycle consistency loss to optimize
two generators:

Losscycleb (Gb, Ga) = εP4∼Pdata P4 [||Ga Gb P4,Mr − P4||1] (8)

To further optimize the shadow image generator Gb , a shadow image P1 is
transformed by using a null mask Mn：

P1i = Gb(P1,Mn) (9)

Moreover, identity loss is applied to regularizes the output. It makes the output image
P1i as close as possible to the input image：
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Lossidentitya (Gb) = εP1∼Pdata P1 [||Gb G1,Mn − P1||1] (10)

Analogously, the author use the real unshaded image P4 as the input of the generator
Ga, which can also be optimized by using identity loss:

Lossidentityb (Ga) = εP4∼Pdata P4 [||Ga G4 − P4||1] (11)

Totally, the loss of IPSM-GAN is a weighted sum of the three kinds of loss in two
learning. The weights of the three loss functions, ω1, ω2, and ω3, are set to 2, 10,
and 5 respectively.

Losstotal = ω1 LossGANa +LossGANb +ω2 Losscyclea Ga,Gb +

Losscycleb Gb, Ga +ω3(Lossidentitya (Gb) + Lossidentityb (Ga)) (12)

4 Experiment

4.1 Dataset

In this thesis, the USR dataset used by the author consists of unpaired images. There
are 2,445 shadow images with shadow and 1,770 images in the dataset. The images
have many kinds of scenes, which contain shadows generated by objects of different
kinds, such as plants, people, buildings, traffic signs, fences, umbrellas, etc. During
the experiment, shadow images were divided into two groups, with 1956 images
randomly selected for training and the remaining 489 images applied to subsequent
test. All the images with no shadow were used in training.
4.2 Setting of Parameters

In the IPSM-GAN, the author uses random noise which follows zero-mean normal
distribution to initialize the parameters in the generator and discriminator. In order to
avoid the discriminators learning too fast, resulting in poor training performance of
the generators, the learning rate of discriminators is set lower than the learning rate of
generators [15,16]. The initial learning rates of the generators and discriminators are
set to 0.0002 and 0.00015, respectively. Their learning rates remain the same value
for the first 100 epochs. In the next 100 epochs, the learning rates are linearly decayed
to 0, after which the learning will be stopped. During the learning, the framework is
optimized by using Adam17]. The first and second momentum values are empirically
set as 0.5 and 0.999.
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4.3 Results and Comparison

Here, the author compares IPSM-GAN with CycleGAN and Mask-ShadowGAN, the
results of them were achieved by running their open source code. The images used for
training and testing are from the USR dataset. The visual comparison of the three
methods are shown in Figure 3. In some specific situations, for example, when the
background texture near the shadow areas is complex (the first row and the fourth
row), IPSM-GAN can more accurately remove the shadow in the image. The results
illustrate that IPSM-GAN can effectively distinguish the shadow from the background
part in images, so as to achieve better learning results in the same dataset of training.
Moreover, by using the mixed shadow mask, IPSM-GAN can learn and recognize the
edge area of the shadow more accurately. In images transformed by IPSM-GAN, the
area between the edges of the shadow areas and the background look more smooth
than those shadows removed by using other methods, resulting in better visual effects
(the second, third, and fifth row).
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original CycleGAN Mask-ShadowGAN IPSM-GAN
Fig. 3. Original image and results from three different removal methods(Photo/Picture credit:

Original)

5 Conclusion

In this thesis, the author proposes a generative adversarial network IPSM-GAN,
guided by mixed shadow mask to remove the shadow of images. The key idea is to
use adaptive threshold and global threshold to obtain a accurate shadow mask, so that
IPSM-GAN can more efficiently learn how to map images with shadow to those
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images have no shadow, and improve the ability of removing shadows. The
experimental results reveal IPSM-GAN's impressive performance in shadow removal,
particularly for images with uncomplicated background textures. Nevertheless,
challenges arise when dealing with images featuring intricate background textures or
challenging shadow patterns. Addressing these challenges demands further
exploration and development of techniques to achieve seamless style transformation
between shadowed and unshaded images. To address these limitations, the author
outlines future directions. One pivotal focus is on dataset expansion, encompassing a
wider variety of scenarios and textures. This expanded dataset aims to bolster
IPSM-GAN's ability to generalize and adapt to diverse image characteristics.
Moreover, the author emphasizes the significance of training the network using
high-quality datasets, fostering improved generalization and enhancing IPSM-GAN's
overall performance. In summary, the proposed IPSM-GAN framework presents a
promising solution for shadow removal, leveraging adaptive thresholding and guided
learning. While demonstrating its efficacy on simpler shadowed images, future efforts
will center on refining its performance for complex scenarios through dataset
augmentation and network enhancement.
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which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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