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Abstract. This paper investigates the factors influencing data-parallel convolu-

tional neural network (CNN) models in the context of image classification. This 

paper analyzes various factors, including batch size, learning rate, loss function, 

and regularization techniques, to understand their impact on the performance of 

data-parallel CNN models. By conducting experiments using diverse datasets, 

such as CIFAR-10, this paper evaluates the effects of these factors on model ac-

curacy, convergence speed, and training efficiency. Based on the research find-

ings, this paper discovered that an appropriate batch size could significantly im-

prove the accuracy and convergence speed of the model. Smaller batch sizes can 

enhance model sensitivity but may result in slower convergence. Conversely, 

larger batch sizes can expedite convergence but might lead to overfitting. Addi-

tionally, this paper observed that appropriately adjusting the learning rate can 

further enhance model accuracy and training efficiency. Finally, using regulari-

zation techniques, such as L1 or L2 regularization, effectively controls model 

overfitting, thereby improving its generalization capabilities. These findings pro-

vide practical guidance for optimizing data-parallel CNN models and can assist 

researchers and practitioners in designing more efficient and accurate deep learn-

ing systems. 
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1 Introduction 

Convolutional neural networks (CNNs) have become highly effective tools in computer 

vision for accomplishing accurate image classification, a fundamental task in this field. 

However, as the scale of data and model complexity increases, the computational re-

sources of a single GPU may not be sufficient to train large-scale CNN models. To fully 

harness the parallel computing capabilities of modern computational platforms, data 

parallelism has become a critical approach for accelerating deep learning training [1]. 

However, implementing data parallelism involves a range of parameter and method 

choices, including batch size, learning rate, loss function, and regularization techniques. 

While several factors greatly influence the performance and training time
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of CNN models, there are still numerous unanswered questions within this domain.
Therefore, a comprehensive analysis of these influencing factors and their
interrelationships is essential to optimize data-parallel CNN models for image
classification tasks [2].

This paper aims to conduct a thorough analysis of the factors influencing data-
parallel CNN models in the context of image classification. By systematically
adjusting and comparing different combinations of parameters and methods, such as
batch size, learning rate, loss function, and regularization techniques, I explore their
effects on model performance and training time, revealing underlying mechanisms
and interactions. Such research will contribute to a deeper understanding of
optimization strategies for data-parallel methods in image classification, providing
guidance and insights for constructing more efficient and accurate image
classification models [3].

This paper investigated the impact of various factors on the performance of
VGG16, ResNet18, and LeNet models trained and tested on the CIFAR-10 dataset.
Specifically, this paper explored the effects of different batch sizes, learning rates,
loss functions, and regularization techniques on metrics such as loss, accuracy, and
training time. Furthermore, this paper implemented data parallelism for VGG16 and
LeNet models and performed data-parallel training and testing on the CIFAR-10
dataset using VGG16. Lastly, this paper attempted to reproduce the Vpipe method [4].

By conducting a comprehensive analysis of the factors influencing data-parallel
CNN models in image classification, this paper can provide guidance and insights for
constructing more efficient and accurate image classification models [5].

2 Methods

2.1 Dataset

In this study, the CIFAR-10 dataset was chosen as the benchmark dataset. CIFAR-10
is widely used in image classification tasks and consists of 50,000 training images and
10,000 testing images. Each image has a resolution of 32x32 pixels. The dataset is
divided into 10 distinct classes, including everyday objects. Please refer to Figure 1
for an illustration of the CIFAR-10 dataset.
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Fig. 1. Legend for CIFAR-10

(Reference: https://blog.csdn.net/weixin_42956785/article/details/89076061)
The CIFAR-10 dataset provides a diverse set of images with various backgrounds,

lighting conditions, and object orientations. The presence of similarities and subtle
differences between different classes poses challenges for image classification
algorithms. The dataset is designed to evaluate the generalization capabilities of
machine learning models and is commonly used to assess the performance of CNN
architectures.

Researchers and practitioners often use the CIFAR-10 dataset to train and test their
image classification models. It is relatively small size and manageable complexity
makes it an ideal choice for conducting experiments, exploring different algorithms,
and comparing the performance of various models. Each image is labeled with a
ground-truth label, enabling supervised learning approaches and facilitating
performance evaluation based on accuracy metrics.

The CIFAR-10 dataset has been instrumental in driving progress in the field of
computer vision, allowing researchers to develop and assess cutting-edge image
classification models. Its widespread usage and availability have fostered the
development of innovative techniques and algorithms, contributing to continuous
improvements in image classification performance [6].

2.2 Model Architectures

This paper employed three popular CNN architectures: VGG16, ResNet18, and
LeNet.

VGG16: A CNN architecture consisting of 16 convolutional layers and 3 fully
connected layers. Its main characteristics are a simple hierarchical structure, small
convolutional kernel size (3x3), and repeated usage of pooling layers [7].

ResNet18: A deep CNN architecture with skip connections, suitable for training
deep networks while maintaining performance. It is relatively lightweight, with 18
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layers, striking a balance between model complexity and computational efficiency
[8].

LeNet: A pioneering CNN model was developed, incorporating two convolutional
layers, pooling layers, and fully connected layers. Its design philosophy involves
extracting local features through convolutional layers, reducing spatial dimensions
through pooling layers, and performing classification through fully connected layers
[9].

2.3 Parallelization Strategy

The focus of this experiment is to utilize data parallelism for training and testing a
CNN model. Model parallelism has also been employed during the initial setup.

Data parallelism is a strategy where training data is divided into batches and
processed parallel across multiple devices. Model parameters are shared among the
devices, and each device computes gradients and updates the parameters using
different data batches. This approach leverages parallel computing to speed up
training and handle larger datasets.

Model parallelism involves dividing a large model into parts and assigning them to
different devices for parallel processing. Each device handles a subset of the model
and exchanges intermediate results to perform computations collectively. Model
parallelism is functional when the entire model cannot fit into a single device's
memory, especially for deep networks with many parameters and complex structures.
It optimizes resource utilization while enabling parallel processing of large-scale
models.

2.4 Environment

In this experiment, AutoDL was used for GPU rental, and the experimental
environment is shown in Table 1.

Table 1. Experimental Environment.

Component Specification
Image PyTorch 1.11.0

Python Version 3.8
CUDA Version 11.3

GPU 2 x NVIDIA RTX 3090 (24GB each)
CPU 30 vCPU Intel(R) Xeon(R) Platinum 8358P @ 2.60GHz
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3 Experimental results and analysis

To train and test the CIFAR-10 dataset, the models LeNet and VGG16 will be utilized
with model parallelism for both and data parallelism specifically for the VGG16
model.

The dataset comprises 50,000 training images and 10,000 test images, all with
dimensions of 32x32 pixels. The chosen batch size is 64.

The cross-entropy loss function will be used during training, and the model
parameters will be updated using the stochastic gradient descent (SGD) optimizer.
The learning rate (lr) is set at 0.001. The training process will run for a fixed number
of epochs, specifically 20 epochs. The experimental results are shown in Table 2.

Table 2. Experiment 1 (Batch size:64, Learn rate:0.001, Loss function: Cross entropy loss
function, Regularization: None).

Training
Times

Loss Accuracy

VGG16 (Data Parallel) 554s 0.129 80.96%
VGG16 (Model Parallel) 224s 0.193 81.32%
LeNet (Model Parallel) 112s 0.134 60.24%

On the CIFAR-10 dataset, both Data-Parallel and Model Parallel training methods
achieve similar accuracy for the VGG16 model. However, Model Parallel training
requires less time. The VGG16 model trained with Model Parallel achieves an
accuracy of 81% in a shorter time compared to Data Parallel training.

In contrast, the LeNet model trained with Model Parallel achieves a relatively
lower accuracy of 60% on the CIFAR-10 dataset. This indicates that further
optimization or considering alternative models may be necessary for improving the
performance of the LeNet model on this dataset.

Fig. 2. Experiment 2 (GPU usage rate). (Photo credit: Original)
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Fig. 3. Experiment 2 (Vpipe execution process). (Photo credit: Original)

Overall, when training on the CIFAR-10 dataset, Model Parallel training method
demonstrates an advantage over Data Parallel in terms of time efficiency while
achieving similar accuracy. However, it is important to note that the LeNet model
performs relatively poorly on this dataset, suggesting the need for further optimization
or alternative models. The following is the replication of Vpipe, as shown in Figure 2
and Figure 3.

The data parallel of VGG16, ResNet18, and LeNet models were used to train and
test the CIFAR-10 dataset, and the effects of different batch sizes, learning rate (Ir),
loss function, and regularization methods on training time, average loss value, and
accuracy were analyzed.

The dataset used in this study includes 50,000 training images and 10,000 testing
images, all with dimensions of 32x32 pixels. Data augmentation has been applied to
the training set. The data augmentation effect is shown in Figure 4.
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Fig. 4. Data augmentation.

(Photo credit: Original)
Data augmentation is a technique that involves applying various transformation

techniques or modifications to expand the training dataset. Its purpose is to increase
the size and diversity of the dataset, thereby improving the performance and
generalization ability of the model. Data augmentation techniques include image
flipping, rotation, scaling and resizing, translation, shearing, zooming, and noise
injection [10].

(a) (b) (c)

Fig. 5. Experiment 3 different batch sizes (Learn rate:0.001, Loss function: Cross entropy loss
function, Regularization: None). (a) Training Time vs Batch Size. (b) Accuracy vs Batch Size.

(c) Loss vs Batch Size.

(Photo credit: Original)
The results obtained from Figure 5 with batch sizes set to 16, 32, 64, and 128 are as

follows:
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According to the experimental results, it is apparent that a larger batch size can
shorten the training time. This is mainly attributed to the ability of a larger batch to
process more samples in parallel. However, it may have an effect on the accuracy and
loss of the LeNet model. In contrast, the VGG16 and ResNet18 models demonstrate
more excellent stability when subjected to changes in batch size, with VGG16
generally exhibiting higher accuracy.

(a) (b) (c)

Fig. 6. Experiment 3 different learning rates (Batch size:64, Loss function: Cross entropy loss
function, Regularization: None). (a) Training Time vs Learn Rate. (b) Accuracy vs Learn Rate.

(c) Loss vs Learn Rate.

(Photo credit: Original)
The results obtained from Figure 6 with learning rate set to 0.001, 0.01, and 0.1 are

as follows:
Based on the experimental findings, it is evident that the choice of learning rate

substantially impacts the model's performance. A learning rate of 0.01 generally
yields good results, enabling the model to achieve the most appropriate levels of
accuracy and loss. However, a higher learning rate (0.1) may reduce accuracy and
increase loss. This could be attributed to the possibility that the higher learning rate
leads to excessively large parameter updates, causing the model to overshoot the
optimal solution. It may also introduce instability into the training process.
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Fig. 7. Experiment 3 different loss function (Batch size:64, Learn rate:0.001, Regularization:
None). (a) Training Time vs Loss Func. (b) Accuracy vs Loss Func. (c) Loss vs Loss Func.

(Photo credit: Original)
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Fig. 8. Experiment 3 different regularizations (Batch size:64, Learn rate:0.001, Loss function:
Cross entropy loss function). (a) Training Time vs Regularization. (b) Accuracy vs

Regularization. (c) Loss vs Regularization.

(Photo credit: Original)
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Cross-entropy loss is widely utilized as a loss function in classification tasks. It
quantifies the disparity between the predicted probability distribution and the actual
distribution of the target labels [11]. Focal Loss is a modification of Cross Entropy
Loss that addresses class imbalance by giving more weight to hard and misclassified
examples [12]. Smooth Cross Entropy Loss mitigates overconfidence by smoothing
the target labels, encouraging the model to be less certain [13]. Label Smoothing Loss
introduces noise to the ground truth labels to prevent overfitting and encourage more
generalized learning [14]. These different loss functions provide variations in how the
model's predictions are compared to the ground truth labels and address specific
challenges in classification tasks, such as class imbalance, overconfidence, and
overfitting. The selection of the loss function is contingent upon the dataset's
characteristics and the specific demands of the classification problem under
consideration.

The results obtained from Figure 7 with the loss function set to Cross Entropy
Loss, Focal Loss, Smooth Cross Entropy Loss, and Label Smoothing Loss are as
above shows. The experimental results clearly demonstrate that the choice of the loss
function has a substantial impact on the accuracy and loss of the LeNet model. When
using focal loss, all three models can achieve the lowest loss values, indicating that
focal loss is more effective in addressing class imbalance issues. Regularization
methods are techniques used to reduce overfitting in models by introducing additional
penalty terms in the loss function to constrain the complexity of model parameters.
Regularization methods help improve the model’s generalization ability and prevent it
from overfitting the training data.

L1 Regularization: Encourages parameter sparsity by adding the sum of absolute
parameter values as a penalty term [15]. L2 Regularization: Promotes a smoother
parameter distribution by adding the squared sum of parameters as a penalty term
[16]. Dropout Regularization: Randomly sets neuron outputs to zero during training,
enhancing model robustness and generalization [17-20]. The results obtained from
Figure 8 with regularization set to None, F1 Regularization, F2 Regularization, and
Dropout Regularization are as follows: According to the experimental results, it is
evident that the inclusion of L1 and L2 regularization leads to a slight increase in
training time. This is likely due to the increased computational complexity associated
with regularization techniques. However, the training time for the dropout method
remains relatively standard, possibly because it reduces the computational burden by
randomly excluding a subset of neurons during parameter updates.

The impact of L1 regularization on accuracy and loss values is also noticeable.
This could be attributed to the fact that L1 regularization imposes constraints on
model parameters to prevent overfitting. However, excessive restrictions may result in
the model being underfitted. The model’s performance can vary depending on the
dataset and model architecture. Therefore, further experimentation and adjustments
may be required to determine its optimal state.
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4 Discussion

Due to time and resource limitations, this paper was unable to conduct experiments
using different numbers of GPUs or increase the number of training epochs. However,
based on our current experiment, we have identified several plans and prospects for
future investigations:

Model performance optimization: This paper plans to explore different
optimization algorithms, learning rate strategies, and hyperparameter tuning methods
to enhance model performance and convergence speed.

Further exploration and implementation of diverse data augmentation and
preprocessing techniques can enhance the model's robustness and its ability to
generalize to new data.

More complex model architectures: This paper aims to investigate the use of more
profound or complex model architectures to enhance model performance further.

Adversarial training and defense strategies: Researching adversarial attacks and
defense methods will allow us to understand the robustness of models when faced
with adversarial samples.

By addressing these aspects, this paper can gain a deeper understanding of
optimizing model performance, improving model robustness, and defending against
adversarial attacks, thereby advancing the field of image classification and deep
learning.

5 Conclusion

In conclusion, this work focused on applying data parallelism and model parallelism
for training CNN models on the CIFAR-10 dataset. This paper found that data
parallelism accelerated training times by distributing batches across multiple
computing devices. This paper also observed the effectiveness of model parallelism in
handling large-scale models.

The research’s significance lies in the insights gained regarding parameter tuning
and the impact on model performance. Additionally, future work can explore
advanced optimization algorithms, data augmentation techniques, and more complex
model architectures. Adversarial training and defense strategies can also be studied to
enhance model robustness against attacks.

Overall, the findings contribute to the field of image classification and deep
learning, and further advancements in these areas will lead to improved model
performance and applicability in real-world scenarios with larger datasets and
complex models.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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