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Abstract. This paper introduces an optimized version of the MOON algorithm 

for federated learning, which is a distributed machine learning approach designed 

to tackle challenges related to data privacy and decentralization. However, the 

performance of traditional federated learning methods is hindered by the non-

uniform distribution of data across nodes, a problem known as the Non-Identical 

and Independently Distributed (NON-IID) problem. The MOON algorithm lev-

erages statistically heterogeneous data for personalized model training and im-

proves the issues of slow gradient descent rates and high network communication 

overhead. Although the MOON algorithm has shown promising results, it still 

faces challenges in terms of computational complexity and training efficiency.      

Therefore, this paper aims to further optimize the MOON algorithm to enhance 

its computational efficiency and training effectiveness. The paper implements the 

MOON algorithm using the PFL-NON-IID framework and verifies its effective-

ness in handling non-uniform data distributions. It also analyzes and compares 

the experimental results to optimize the algorithm's computational performance, 

real-time capability, and scalability. The study aims to provide support for the 

application of distributed deep learning systems. 
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1      Introduction 

Federated Learning is an approach to distributed machine learning that aims to tackle 

challenges related to data privacy and decentralization. It enables model training with-

out sharing raw data, thus protecting user privacy [1]. Federated Learning has gained 

considerable attention for its ability to perform centralized learning without compro-

mising data privacy. It is a decentralized learning technique that reduces the risk of data 

leakage by decomposing the dataset and algorithm's execution status,
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allowing distributed user devices to collaborate on model training without disclosing
sensitive data to other participants. Federated Learning enables large-scale training on
devices that generate data while keeping sensitive data retained by data owners
through local data collection and training. The core entities involved in Federated
Learning are the central server and client devices, where the server coordinates the
clients at a macro level, and the clients perform local machine learning model
training.

The general workflow of Federated Learning involves several steps. First, each
client independently trains on its local data. Next, the clients encrypt the model
parameters or gradients and upload them to the server. The server securely aggregates
the collected client model parameters or gradients to ensure secure aggregation.
Finally, the server distributes the model to the corresponding clients. This workflow
enables collaborative model training while preserving data privacy in a distributed
environment.

However, in practical applications, we face a significant problem: the data
distribution across different nodes is highly uneven, known as the Non-Identical and
Independently Distributed (NON-IID) problem [2]. This non-uniform data
distribution hinders the performance of traditional federated learning methods when
dealing with non-uniform data. These methods fail to adequately consider the data
feature differences among nodes, thereby impacting the model's generalization ability.
Additionally, the non-uniform data distribution can lead to poor training performance
on certain nodes and introduce bias during the model parameter aggregation process,
thereby degrading the overall model performance.

To address the NON-IID problem, researchers have proposed the MOON
algorithm [2]. The MOON algorithm is a model comparison-based federated learning
algorithm designed to leverage statistically heterogeneous data for personalized model
training. This algorithm effectively tackles the challenge of non-uniform data
distribution by progressively fusing local models from multiple nodes and improves
the issues of slow gradient descent rates and high network communication overhead.
Experimental results demonstrate that the MOON algorithm exhibits remarkable
privacy protection while outperforming traditional methods in terms of speed and
accuracy [2].

Nevertheless, the MOON algorithm still faces challenges in practical applications.
The extensive model training, parameter transmission, and computations involved in
the MOON algorithm result in high computational complexity, long training times,
and hampered real-time performance and scalability. Therefore, it is crucial to further
optimize the MOON algorithm to enhance its computational efficiency and training
effectiveness.

Therefore, this paper aims to experimentally and practically implement the MOON
algorithm using the PFL-NON-IID framework. The objective is to verify the
effectiveness and feasibility of the MOON algorithm in handling non-uniform data
distributions. Additionally, through the analysis and comparison of experimental
results, this research aims to explore and optimize the computational performance and
training efficiency of the MOON algorithm, thereby enhancing its real-time capability
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and scalability [3]. Ultimately, this study aims to provide further support and
assurance for the application of distributed deep learning systems.

2 Related Work

In this section, we present the background of Federated Learning and related research
work.

2.1 Background

Over the last few years, a lot of research has been conducted focusing on the impact
of data heterogeneity on distributed learning. By way of example, in [4] the author
proposed the Federated Multi-Task Learning (FedMT) method, which can handle the
problem of different data distributions on each node, but has limited effectiveness in
dealing with data heterogeneity. Zhao et al. [5] proposed a distributed heterogeneity
adaptation method by analyzing the differences in data distributions of different
nodes, which is improving the accuracy of the model, but still suffers from slow
convergence. In [6], the author proposed an adaptive Federated learning method in a
resource-constrained edge computing system, which improves system efficiency by
dynamically adjusting device participation and local iterations but may not perform
well in an unstable network environment. In [7], the author proposed a Federated
learning method for heterogeneous data by introducing a hybrid update strategy,
which can personalize the model under different data distributions but may require
more communication rounds. A personalized Federated learning method based on
meta-learning is proposed in [8]. A meta-learner is trained to adapt to the data
distribution of different users, which improves the personalized performance of the
model, but its computational complexity may be high. In addition, the author of [9]
proposed an efficient Federated learning method designed for heterogeneous clients,
which shows advantages in computing and communication efficiency but may pose
challenges when dealing with extremely heterogeneous environments.
Comprehensive research[10] was conducted on Federated learning in the Internet of
Things, providing rich research background and the latest progress for the outside
world, but no specific solutions were proposed for specific problems.

2.2 MOON algorithm

In this context, the MOON algorithm emerged. It proposes a method based on model
comparison, which uses the personalized information in the statistical heterogeneous
data to train the personalized model, to better deal with the data heterogeneity in
Federated learning. Through model training on local devices, the updated model
parameters are aggregated to the central server in Federated learning to achieve the
global update of the model. However, the traditional Federated learning algorithm has
some challenges when dealing with statistical heterogeneous data. The MOON
algorithm proposes a model comparison-based method that utilizes personalized
information from statistical heterogeneous data to train personalized models.
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2.3 PFL-NON-IID platform

We use the PFL-NON-IID platform to implement the MOON algorithm. PFL-NON-
IID is a deep learning framework based on PyTorch, providing a new distributed data
processing method that eliminates the problem of data sample distribution between
different nodes. It provides the PFL (Privacy Resilient Federated Learning) algorithm,
which enables multiple devices to communicate and train models with each other
without disclosing data, thereby achieving the goal of improving model performance.
The PFL-NON-IID platform has the advantages of strong distributed computing
power, strict data privacy protection, and efficient and simple implementation,
providing strong support for the application of distributed deep learning.

3 Methodology

3.1 Introduction of MOON algorithm

The MOON (Mixture Of Online Learning) algorithm [11] employs a distributed
approach to machine learning, specifically designed for training a global model within
the framework of Federated Learning. By comparing the features generated on the
same data across different models, the local training update directions are corrected.
Introduction to the Process of the MOON Algorithm：

Initialization of global model parameters, w, and participant model parameters, wᵢ, is
performed initially. For each training round, denoted as k = 1, 2, ..., K:
1. The central server disseminates the model parameters, denoted as "w," to all
participants involved in the process.
2. Each participant performs the following operations locally:
Compute the Gradient Direction Similarity (GDSi): Participants use their local dataset
to calculate the gradient of their current model parameters, wᵢ, and measure the
difference between this gradient and the gradient of the global model parameters, w.
This difference can be quantified using metrics such as cosine similarity or other
similarity measures.
3. Calculate the weight, λᵢ, based on the Gradient Direction Similarity (GDSi):
Participants determine their weight using a formula or rule that takes into account the
gradient direction similarity. The weight represents the contribution of the participant
to the global model, and participants with higher similarity may have larger weights.
4. Perform T rounds of gradient descent on their local dataset to update their model
parameters, wᵢ: Participants execute T rounds of the gradient descent algorithm using
their local dataset. They calculate gradients based on the local data and update their
model parameters, wᵢ, accordingly.
5. Send their model parameters, wᵢ, and weights, λᵢ, to the central server: Participants
transmit their updated model parameters, wᵢ, and the computed weights, λᵢ, to the
central server for further processing.
6. The central server selects some part of the participants based on a certain rule (e.g.,
weighted average) upon receiving the model parameters, wᵢ, and weights, λᵢ, from the
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participants. It then performs a weighted average of the selected participants' model
parameters to obtain the updated global model parameters, wᵢ.
7. After the K training rounds, the MOON algorithm returns the final global model
parameters, wᵢ, as the training result. These parameters represent the optimized model
obtained through the MOON algorithm's iterative process using the distributed
learning framework.

3.2 Advantages of the MOON algorithm

Prevent Data breach: Moon algorithm adopts Federated learning architecture so that
every client’s data can be stored locally and will not be transmitted to the centralized
server, thus protecting data privacy.
Reduce computational overhead: The Moon algorithm uses a new feature
aggregation-based model preprocessing method, which allows the global model to be
decomposed into local models during model training, thereby reducing computational
complexity and training time.
Improve algorithm accuracy: Moon algorithm can improve algorithm accuracy
through fast learning and data accumulation. The Moon algorithm supports online
learning, allowing the model to be updated in real-time applications, thereby enabling
the algorithm to adapt to changes in different scene environments.
Distributed storage support: The Moon algorithm distributes the training weights of
the model across multiple machines, making it scalable and supported by distributed
storage. This means that the Moon algorithm can be used to process large-scale data
and can quickly scale to support more clients.

3.3 The flow of the MOON algorithm

1. Initialize the global model parameters w and the model parameters wi for
each participant. For each round of training k=1,2,..., K: The central server
broadcasts the global model parameter w to every participant;
2. Each participant performs the following actions locally:
(1) Calculate one's gradient direction similarity GDSi;
(2) Calculate its weight based on GDSi λi;
(3) Perform a T-round gradient descent on the local dataset and update one’s

model parameters wi;
(4) Set one’s own model parameters wi and weights λi and send it to the central

server;
3. The central server selects a portion of participants based on a certain rule

and weights their model parameters to update the global model parameter w.
4. Return the final global model parameter w.
The Logical framework of moon algorithm and its specific part description are

shown in Fig. 1.

228             S. Chen et al.



Fig. 1. The block diagram of the moon algorithm. (Picture credit:Original)
（1）Initialization of Global Model Parameters, w, and Participant Model

Parameters, wᵢ
（2）For each training iteration, the central server disseminates the model

parameters, denoted as "w," to all participants.
（3）Each participant computes the Gradient Direction Similarity (GDSi) locally.
（4）Each participant calculates their weight, λᵢ, based on the Gradient Direction

Similarity (GDSi).
（5）Each participant performs T rounds of gradient descent on their local dataset

to update their model parameters, wᵢ.
（6）The updated model parameters, wᵢ, and weights, λᵢ, are sent to the central

server by each participant.
（7）The central server applies specific selection rules to choose a subset of

participants, and then conducts a weighted averaging of their model parameters to
update the global model parameters, denoted as "wᵢ".
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4 Experiments

4.1 Experimental Setup

We will use a pathological non-IID dataset as the experimental dataset and evaluate
the effectiveness of the MOON algorithm by comparing its performance with other
benchmark algorithms in terms of accuracy and personalization performance. The
experiments will consider different cases of statistical heterogeneity and several
devices and analyze the performance variation of the MOON algorithm in these cases.

4.2 Comparison of the contents

We experimented with the hyperparameters such as the number of partial iterations,
batch size, learning rate, the proportion of training clients involved, and several local
iterations using appropriate data sets that can lead to a steady increase in their
accuracy rates, respectively, to find the relatively optimal hyperparameters. In our
experiments, we use the control variables method to compare the effect of the
different values of each variable on the accuracy rate by making a cross-sectional
comparison.

To address the statistical heterogeneity problem and thus be able to obtain higher
accuracy on local datasets, we reduce this heterogeneity by adjusting the aggregation
weights. We include in the source code three additional different ways of assigning
aggregation weights:

1. Use the same weight for each client
2. The appropriate aggregation weight is assigned according to the client's training

loss, the smaller the loss, the greater the aggregation weight.
3. Assign the corresponding aggregation weight based on the accuracy of the

client, the greater the accuracy the greater the aggregation weight.
By learning these three different aggregation weighting approaches with default

parameters, we can compare their accuracy gaps to observe the impact of different
aggregation weights on heterogeneity.

4.3 Optimization measures

Based on the basic implementation of the MOON algorithm, we will conduct further
optimization studies. Due to the specificity of pathological non-IID datasets, we can
adopt specific optimization strategies to improve the performance of the algorithm.
The specific optimization strategies may include adjusting the model architecture,
introducing regularization methods, improving the model comparison strategy, etc.
Through these optimization measures, we hope to further improve the effectiveness of
the MOON algorithm in processing pathological non-IID datasets. We first optimized
the hyperparameter part, and we found that changes in four of the hyperparameters
have a significant impact on the accuracy. As shown in Fig. 2, the graph of a change
in learning rate does not result in a significant change in accuracy in the range of 0.01
to 0.001. In Fig. 3, we discover that as the number of clients increases, there is a slight
increase in accuracy at first, but a significant decrease in accuracy from more than
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five clients onwards. The chart in Fig. 4 indicates that that the accuracy remains at a
high level until the number of local epochs is 10, but after 10 the accuracy drops and
remains at a low level. By observing the chart in Fig. 5, the variable μ reaches its
maximum accuracy at 0.5, while other values in the range of 0.1 to 10 correspond to a
slightly lower accuracy.

Fig. 2.Model Accuracy with Learning rate. (Picture credit:Original)

Fig. 3.Model Accuracy with number clients. (Picture credit:Original)
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Fig. 4.Model Accuracy with local epochs. (Picture credit:Original)

Fig. 5.Model Accuracy with variable μ. (Picture credit:Original)

The default value for the learning rate is 0.005 and by varying the learning rate we
can see that the local learning rate is more accurate around the default value. The
default value for the total number of clients is 2. By varying the total number of
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clients we can see that higher accuracy is achieved when the number is around 4, and
that accuracy decreases significantly after 5. The default value for the number of
iterations is 1. By varying the number of iterations, it can be seen that the accuracy
rate is higher below 10 and hurts the accuracy rate after 10. The default value for the
control variable μ is 1. By varying μ, we can see that the highest accuracy is achieved
when μ is close to 0.5.

Previous studies used μ = [0.1, 0.3, 0.5, 0.7, 1] to test the performance of the model
in CiteSeer. Among them, The best accuracy rates for FedAvg and MOON were
70.6% and 69.8% respectively, while MOON was less robust in node classification,
with accuracy rates fluctuating between 57.7% and 69.8%. This indicates that the
weighted similarity-constrained approach improves convergence and robustness. This
study also found that lower beta parameters enable better performance of the model
with more effective performance [12].

For the aggregation weights, in addition to the source code default (assigning
weights based on the size of the dataset), three other methods of assigning weights
were used. The first approach is to assign weights equally to each client. The second
way is to assign aggregated weights based on the training loss of each client (the
smaller the loss the greater the aggregated weight). The third way is to assign
aggregated weights based on the test accuracy of each client (the higher the accuracy
the higher the aggregated weight).

The algorithm's default way of averaging the weights is to assign the weights based
on the size of the dataset (the source code assignment method), which we used as a
benchmark for the subsequent analysis. After experimentation and analysis of the
data, we found that the first modified approach, which assigns weights equally to each
client, has a large improvement in accuracy compared to the original approach. The
second modified approach, which assigns aggregated weights based on the training
loss of each client (the smaller the loss the greater the aggregated weight), has an
increase in accuracy compared to the original approach, but not as much as the
previous approach. The third modification, which assigns aggregation weights based
on the test accuracy of each client (the larger the accuracy the larger the aggregation
weights), shows a significant improvement in accuracy compared to the original
approach, and is the same as the average weight assignment.

5 Conclusion

Through experiments on the pathological non-IID dataset, we evaluate the
performance of the MOON algorithm and propose optimization ideas for this dataset.
The MOON algorithm can be further investigated and improved in the future to
accommodate a wider range of statistical heterogeneity data scenarios. All other
parameters being equal, the number of local iterations in the MOON algorithm needs
to be controlled within 10 to obtain high accuracy and reduce the communication
overhead and weaken the impact of system heterogeneity; the total number of clients
needs to be controlled within 4, after 5 there is a significant negative impact on the
accuracy; the control variable μ of the MOON algorithm needs to be controlled
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around 0.5 to obtain The control variable μ of the moon algorithm needs to be
controlled around 0.5 so that a relatively high accuracy rate can be obtained. For the
adjustment of aggregation weights, among the three additional ways we added, all
three ways can provide higher accuracy than the original way. MOON algorithm, as a
new distributed deep learning algorithm, can effectively solve the problem of non-
independent and homogeneous data distribution, which makes it potentially
applicable to several fields, such as medical and financial. With hierarchical
aggregation, it can effectively support larger datasets, which will help accelerate the
training process and improve the efficiency of the algorithm. the MOON algorithm
supports a variety of models, such as neural networks, logistic regression,
convolutional neural networks, etc., which can meet the needs of practical
applications. the MOON algorithm has good improvement prospects and is expected
to become one of the important algorithms in the field of distributed deep learning in
the future. In general, the future outlook of MOON algorithm experiments is very
broad, and the experiments can be improved in many aspects in the future, such as
expanding the data scale, improving the data quality, optimizing the performance of
the MOON algorithm, including speeding up the algorithm, reducing the
computational complexity of the algorithm and other aspects, and better verifying the
effectiveness of MOON algorithm. And it can be applied to specific scenarios such as
intelligent manufacturing, intelligent transportation, intelligent medical care, etc. to
verify its applicability and feasibility in different fields, and to guide the selection and
optimization of MOON algorithms in practical applications.

Acknowledgment

All the authors contributed equally and their names were listed in alphabetical order.

References

1. Yang, Q., Liu, Y., Chen, T., and Tong, Y.: "Federated machine learning: Concept and
applications." ACM Transactions on Intelligent Systems and Technology (TIST) 10(2), pp.
1–19, 2019).

2. Li, Q., He, B., and Song, D.: "Model-contrastive federated learning." In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16529–
16538, 2021.

3. Zhu, H., et al.: "Federated learning on non-IID data: A survey." arXiv preprint
arXiv:2106.06843 (2021).

4. Smith, V. et al. 'Federated Multi-Task Learning'. NeurIPS, pp. 4424–4434, 2017.
5. Zhao, Yue, et al. "Federated learning with non-iid data." arXiv preprint

arXiv:1806.00582 ,2018.
6. Wang, Shiqiang, et al. "Adaptive federated learning in resource-constrained edge

computing systems." IEEE Journal on selected areas in Communications 37.6, pp. 1205–
1221, 2019.

234             S. Chen et al.



7. Sattler, Felix, Klaus-Robert Müller, and Wojciech Samek. "Clustered federated learning:
Model-agnostic distributed multitask optimization under privacy constraints." IEEE
Transactions on neural networks and learning systems 32.8, pp. 3710–3722, 2020.

8. Fallah, Alireza, Aryan Mokhtari, and Asuman Ozdaglar. "Personalized federated learning:
A meta-learning approach." arXiv preprint arXiv:2002.07948, 2020.

9. Diao, Enmao , J. Ding , and V. Tarokh . "HeteroFL: Computation and Communication
Efficient Federated Learning for Heterogeneous Clients."arXiv preprint arXiv:2010.01264,
2020.

10. Nguyen, Dinh C., et al. "Federated learning for Internet of things: A comprehensive
survey." IEEE Communications Surveys & Tutorials 23.3, pp. 1622–1658, 2021.

11. Qinbin Li; Bingsheng He; Dawn Song, "Model-Contrastive Federated Learning." 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10708–10717,
2021.

12. X. Zeng et al., "Feature-Contrastive Graph Federated Learning: Responsible AI in Graph
Information Analysis," in IEEE Transactions on Computational Social Systems, pp. 1–11,
2022.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

PFL-NON-IID Framework: Evaluating MOON Algorithm             235

https://ieeexplore.ieee.org/author/37087090170
https://ieeexplore.ieee.org/author/37532755800
https://ieeexplore.ieee.org/author/37275586500
https://ieeexplore.ieee.org/document/9578660/
https://ieeexplore.ieee.org/xpl/conhome/9577055/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9577055/proceeding
http://creativecommons.org/licenses/by-nc/4.0/

	PFL-NON-IID Framework: Evaluating MOON Algorithm on Handling Non-IID Data Distributions
	1      Introduction
	2Related Work
	2.1Background
	2.2MOON algorithm
	2.3PFL-NON-IID platform

	3Methodology
	3.1Introduction of MOON algorithm
	3.2Advantages of the MOON algorithm
	3.3The flow of the MOON algorithm

	4Experiments
	4.1Experimental Setup
	4.2Comparison of the contents
	4.3Optimization measures

	5Conclusion
	Acknowledgment
	References




