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Abstract. Analysis for the area of complex networks and their applications to 

economics and finance is an important area of current research in finance. This 

paper carries out mathematical modelling of the financial system, aiming to 

study the contagion process of financial risk and to investigate the contagion ef-

fect of financial risk. It also analyses the subjects and paths in the process of fi-

nancial risk contagion. Firstly, the paper abstracts the financial system as a fi-

nancial network with scale-free nature. Based on the traditional SIRS virus con-

tagion dynamics model, the financial risk contagion model (SIRD model) is 

built by adding bankruptcy nodes and bankruptcy rate parameters, which is in 

conjunction with the characteristics of the actual financial system. Then simula-

tions are carried out to analyze the effects of risk propagation rate, recovery 

rate, resistance failure rate and bankruptcy rate on the steady state results in the 

model respectively. Finally, based on the simulation results, the characteristics 

of financial risk contagion under different scenarios are discussed, and the na-

ture of financial risk contagion is summarized and suggestions are given. 

Keywords: Complex Network, Scale-free Network Model, Financial Risk Con-

tagion, Propagation Dynamics Models. 

1 Introduction 

In recent years, the global economic situation and financial markets have been greatly 

affected by the COVID-19 and war. The financial sector is desperately trying to avoid 

another global crisis. The financial system is at the heart of modern economic finance 

which is a system concerned with the concentration, flow, and distribution of funds. 

With the changes of the times, the development of information technology has made 

the financial world react more rapidly and violently to fluctuations and shocks than it 

did in the last century. The study of financial crises has shown that all economic ac-

tors can fall victim to them. Far from the previous century, one of the significant 

changes in the current financial crisis is the strengthening of the tendency towards 

"mutual shocks". As a result, the financial community is always looking for new fi-

nancial models and theories of finance to study the real financial system. In recent 

years, the focus of the efforts of these physicists and mathematicians has gradually  
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shifted to the field of network science. The increasingly obvious shift in the financial 
system from 'too big to fail' to 'too complex to fail' and 'too connected to fail' complex 
networks that characterized the financial crisis has made the case for complex This 
makes the case for the entry of complex network science into the field of finance even 
more natural. 

The origins of complex network theory can be traced back to the study of the 'sev-
en bridges problem'. Initial researchers focused on regular networks, and in the mid-
dle of the last century Erdos and Rnyi studied random graphs and proposed ER ran-
dom networks [1]. Later, Watts and Strogatz studied real networks in society and 
proposed WS small-world networks [2]. Barabdsi and Albert discovered the scale-free 
character of networks and proposed BA scale-free networks [3]. Subsequently, com-
plex network science has been widely used in the fields of computing, bioscience, and 
information science. Entering the 21st century, researchers have begun to dissect fi-
nancial systems through the lens of complex networks. Early researchers approached 
complex network systems from a traditional economic equilibrium perspective, Allen, 
Gale [4] and Freixa [5] Stefano Schiavo and others [6] used a complex network ap-
proach to study the integration patterns of international trade networks and interna-
tional financial network. Song and others use complex network theory as a tool to 
study and suggest that interbank networks have a double power law distribution [7]. 
D'Arcangelis A. M. and Rotundo G. use complex network theory to investigate the 
nature of geographic aggregation of fund management companies in Europe [8]. 
Kydros Dimitrios et al focus on the "shallowness" of financial markets, choosing 
correlation coefficients to measure the correlation between nodes in a financial net-
work [9]. Wang and others use a minimum spanning tree network to describe the 
linkages in international foreign exchange markets [10]. In addition, extending more 
algorithms and models for risk contagion has also been a focus of researchers. Eison-
berg and Noe proposed the EN algorithm, which constructs interbank correlations 
from information on banks' exposures at various points in time and clears the nodes in 
the network by an exposure matrix [11]. Battiston et al. proposed the DebtRank algo-
rithm based on the PageRank algorithm and feedback center, which can recursively 
simulate the transmission process of decay [12]. Hu constructed the China interbank 
network and analyzed the large payment data of the People's Bank of China using 
virus transmission dynamics algorithms [13]. Huang focused on the DebtRank net-
work infection algorithm and improves it [14]. 

As the various actors in the financial system are connected to each other through 
funds, contracts, business transactions, etc., this connection acts as a network cover-
ing the entire financial system and as more and more mathematicians and physicists 
become involved in the study of finance, they find that this network has very similar 
properties to the complex networks they are familiar with. Naturally, in the face of 
today's increasingly complex financial system and unstable international forms, com-
plex network science gives the academic community a new perspective to study fi-
nance system and financial risks. In order to further explore the network characteris-
tics of the financial system and study the spread characteristics of financial risks, this 
paper intends to carry out abstraction mathematical modeling of the real financial 
system, try to establish financial risk contagion in complex financial networks, And 
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adopt a propagation dynamics model that is more in line with the actual financial 
network to study the process of financial risk propagation, and simulate it. 

2 Methodology 

This study requires a combination of mathematics, network science, finance, and 
economics in constructing financial networks and summarizing the effects of financial 
risk propagation, and considers the reality of the situation. Based on the results of 
scale- free networks, this paper mathematically models the financial system and ab-
stracts it into a scale-free financial network. This paper also builds on and improves 
the traditional SIRS virus propagation dynamics model by mathematically modelling 
the process of financial risk propagation in the network, considering the actual possi-
ble bankruptcy scenarios, introducing bankruptcy nodes and bankruptcy rate parame-
ters, and establishing a financial risk contagion model (SIRD model). 

Due to the complexity of actual financial systems, not only are data and infor-
mation confidential and difficult to access, but also the connections between subjects 
are often territorial and business networks are often subjective in nature, factors that 
are detrimental to the study of the overall characteristics of financial networks. This 
paper therefore assumes an ideal financial system based on the scale-free nature of 
financial networks, and solves the established SIRD differential equation model with 
the help of Python's odeint function as the core to simulate the steady-state results of 
risk propagation using the Longo-Kutta method. In the process, the parameters are 
repeatedly adjusted and the experiment is repeated to investigate the effect of differ-
ent parameters on the steady-state results of the model. 

This study focuses on the foundations of the propagation of financial risk in finan-
cial networks. The abstraction of a financial system into a financial network is a pro-
cess of abstracting the participants of the financial system into nodes and the links 
between them into connected edges. Since the participants in a financial system are 
complex and have different functions, the nodes into which they are abstracted should 
also have different properties, and one has to filter the participants in order to build 
the ideal model. Since this paper focuses on the process of financial risk transmission 
in financial networks, the economic agents selected as nodes should be the main com-
ponents of the financial risk transmission process, i.e., the micro-foundations of the 
financial risk contagion effect. And the study of risk contagion paths reveals the ag-
gregation and centrality of nodes in a network. This research improves the traditional 
virus transmission model. The traditional SIRS virus propagation dynamics model is 
improved by constructing a financial risk propagation model (SIRD model) that con-
siders the specificity of financial network nodes and the differences between financial 
risks and viruses in the propagation process, introducing bankruptcy nodes and bank-
ruptcy rate parameters, adding a new removal state (bankruptcy state) to the circular 
evolution of the original SIRS model, and the proportion of bankruptcy. The propor-
tion of bankruptcy nodes reflects to a certain extent the destructiveness of risk propa-
gation to the financial system. 
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3 Financial Risk Contagion Models 

Research on financial risk contagion models is now relatively mature, with most stud-
ies showing that financial networks have significant scale- free network characteris-
tics, and the research in this paper is based on this assumption. One of the more main-
stream studies is to apply the traditional virological three-state contagion model, i.e., 
the SIR viral contagion model, to financial networks. This paper focuses on improv-
ing the traditional SIRS viral contagion dynamics model to obtain the SIRD model of 
financial risk contagion. 

3.1 Traditional SIRS infectious disease transmission model 

In traditional SIRS models, there are three states, with each individual in one state. 
The basic states include susceptible state (S), which refers to individuals in a healthy 
state but may be infected; infectious state (I), which refers to individuals in an infec-
tious state who are infectious; recovery state(R), also known as the state of removal, 
refers to the state of recovery and acquisition of certain immunity after infection. 
Individuals in a cured state in the SIRS model still have the possibility of becoming 
susceptible again and will not be removed from the system. The infection mechanism 
of the SIRS model can be described as: a portion of infected nodes in the early stages 
of transmission β The probability of (infection rate) transmitting the virus to suscepti-
ble nodes, while the infected nodes will γ The probability of (cure rate) becoming a 
cure node, and the cure node will α The probability of the cure failure rate becoming a 
susceptible node again. The infection diagram is as shown in Fig. 1. 

 

Fig. 1. Schematic diagram of infection process in traditional SIRS model. 

3.2 SIRD financial risk contagion model 

There are four types of economic entities in the financial risk contagion model (also 
known as the SIRD contagion model), including health status (S), which refers to 
economic entities that have not yet been affected by the crisis, but may be infected by 
related economic entities that have already fallen into crisis; crisis state, which refers 
to the economic entities severely affected by the crisis, and these economic entities 
will transmit risks to relevant entities through transactions, settlements, investment 
and financing, and other connections; recovery state (R), which refers to an economic 
entity that has emerged from a crisis or has a certain level of risk resistance; bank-
ruptcy state (D), which refers to the economic entity that cannot resist the crisis and 
goes bankrupt. Nodes in bankruptcy state will no longer enter the SIR triple state 
cycle. The contagion mechanism of the SIRD model can be described as follows: at 
the beginning of a financial crisis, a small proportion of nodes will be the first to fall 
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into the crisis, and a large number of healthy nodes will be connected to the crisis 
nodes because they have related businesses and will fall into the crisis nodes with a 
probability of β (risk contagion rate); the crisis nodes will enter the removal state with 
a probability of γ (recovery rate) due to spontaneous market regulation or internal risk 
management; the nodes in the removal state may lose their risk resistance with a 
probability of α (resistance failure rate) and become healthy nodes again. Nodes in the 
removed state may lose their risk resistance with a probability of α (resistance to fail-
ure) and become healthy nodes again; some economic agents in crisis with small size 
or poor risk management may enter a state of bankruptcy with a probability of δ 
(bankruptcy rate). The risk contagion diagram of the model is shown in Fig. 2. There-
fore, there is a property: in financial networks with scale-free characteristics, infected 
nodes will always occupy a certain proportion, and risk contagion in financial net-
works will almost always exist. 

 

Fig. 2. Schematic diagram of the contagion process of the SIRD financial risk contagion model. 

4 Results & Discussion 

The micro entities involved in risk propagation during financial crises have been dis-
cussed earlier, and their respective characteristics have been discussed. There is het-
erogeneity among these economic entities, with different entities occupying different 
positions in the financial system, possessing different business capabilities, risk man-
agement capabilities, and risk bearing capabilities, playing different roles in the pro-
cess of risk dissemination. This means that the proportion of each economic entity in 
the nodes constituting different financial networks is also different, which is generally 
characterized by setting Degree distribution. For different nodes, their infection rate, 
recovery rate, resistance failure rate, and bankruptcy rate also vary. This article sim-
plifies this process by taking parameters that represent the average level of node fea-
tures. When studying the SIRS model, it was mentioned that nodes in a cured state 
will acquire certain immune abilities. In the application process of some SIRS mod-
els, a coefficient is added to reflect the duration of immunity, usually in the form of 
the reciprocal of immune duration. Considering the particularity of the financial sys-
tem, this coefficient is not used in the modeling process in this article. The probability 
of a node transitioning from a removed state to a healthy and susceptible state, known 
as the resistance failure rate, is directly used as the coefficient of the model. 

For traditional virus transmission models, the initial proportion of susceptible 
nodes S(0)≈1, the initial proportion of infected nodes I(0)≈0, and the initial proportion 
of cured nodes R(0)=0 [15] are usually set during the application process. Because 
when studying the process of virus transmission, the overall population is generally a 
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large value (such as the resident population of Guangzhou, which is over 18 million), 
and the initial infected population is usually only a few or dozens, which is a value 
close to zero in proportion. In reality, when studying a financial system, the number 
of economic entities involved is much smaller than the population that needs to be 
considered in the virus infection model, so the initial infection node proportion cannot 
be ignored as zero. In addition, in the early stages of virus transmission, it is generally 
believed that nodes do not have self-healing and immune capabilities. However, in the 
financial system, excellent risk management can help economic entities effectively 
cope with risks, thereby gaining a certain level of risk resistance. Therefore, when 
setting parameters, it should be considered to assign a non-zero initial value to the 
healing node. In addition, this article argues that no economic entity has already gone 
bankrupt in the early stages of risk outbreak, indicating that D(0)=0. 

4.1 Model parameter settings 

Based on the properties summarized from previous research, it has been demonstrated 
that the specific numerical values of the model do not have a decisive impact on the 
model results, and the model results are only determined by the proportion between 
parameters. Therefore, based on existing research results and experience, the node 
ratios for the four initial states are set as S(0)=0.85, I(0)=0.05, R (0)=0.10, and 
D(0)=0. A reference group parameter group is set (β, γ, α, δ)=(0.80,0.20, 0.05, 0.01) 
were simulated and the following sets of parameters were set for comparison to ex-
plore the impact of different parameter changes on model evolution. First, we study 
the impact of changes in risk transmission rate, we determine (γ, α, δ)= (0.20, 0.05, 
0.01), β takes the values listed in Table. 1 As for the impact of changes in recovery 
rate, we determine (β,α,δ)= (0.80, 0.05, 0.01), γ takes the values listed in Table. 2. To 
study the impact of changes in resistance failure rate, we determine (β,γ,δ)= (0.80, 
0.20, 0.01), α takes the values given in Table. 3. For the impact of changes in bank-
ruptcy rates, we determine (β,γ,α)= (0.80, 0.20, 0.05), δ takes the values in Table. 4. 

Table 1. Value of risk propagation rate. 

 (a) (b) (c) (d) 

Beta= 0.90 0.60 0.40 0.20 

Table 2. Value of recovery rate. 

 (a) (b) (c) (d) 

Gamma= 0.95 0.80 0.40 0.16 

Table 3. Value of resistance failure rate. 

 (a) (b) (c) (d) 

Alpha= 0.01 0.025 0.16 0.40 
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Table 4. Value of Bankruptcy Rate. 

 (a) (b) 

Delta= 0.05 0.10 

4.2 Analysis of simulation results 

Firstly, we analyze the reference group. The simulation results of the financial risk 
propagation model (0.80,0.20, 0.05, 0.01) are shown in Fig. 3. Accordingly, local 
nodes in a scale-free financial network fall into crisis, financial risks quickly spread 
throughout the network, and a large number of healthy nodes quickly become crisis 
nodes. It only takes about 7 to 8 time units for the proportion of crisis nodes to reach 
its peak, and the proportion of bankruptcy nodes during this period also increases 
rapidly. At the same time, economic entities in the network will carry out self-help 
actions (such as interbank lending, rapid adjustment of business by physical enterpris-
es, and financial institutions reselling assets to increase cash flow), and the situation 
of powerful or risk management capable economic entities will recover, indicating 
that they have entered the recovery state. From the graph, it can be seen that the pro-
portion of healthy nodes reaches its lowest value at about 12 time units, then slightly 
rebounds, and finally stabilizes at about 40 time nodes. The proportion of removing 
state nodes at the same time reaches its highest value in about 15 time units, then 
drops back and gradually decreases at an extremely low rate. This phenomenon indi-
cates that a certain proportion of economic entities in the financial system are in a 
sensitive state to crises, which is likely due to their own strength and risk management 
capabilities being insufficient to support them in safely navigating crises. Meanwhile, 
although the proportion of infected nodes will decrease at a low rate in the long run, 
the proportion of bankrupt nodes will also increase at a low rate, which means that as 
long as risks continue to spread in the financial network, they will continue to cause 
damage to the financial system. It can be considered that the peak and steady-state 
values of the proportion of crisis nodes can reflect the degree of contagion of financial 
risks, while the proportion of bankruptcy nodes can reflect the degree of damage to 
the financial system caused by the crisis. The conclusion drawn above is that when a 
financial crisis erupts, it is necessary for regulatory and government departments to 
aid economic entities in the financial system.  

 

Fig. 3. Simulation results of SIRD model (reference group). 
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The basic ideas can include reducing propagation rate, increasing recovery rate, re-
ducing resistance failure rate, and reducing bankruptcy rate. Specifically, if the four 
parameters are proportionally reduced by twice, the simulation results of the model 
are as shown in Fig. 4. Among them, Fig. 4 (a) shows the results at the same time 
scale as Fig. 3, while Fig. 4 (b) shows the results at twice the time scale. It can be 
observed that Fig. 4 (b) and Fig. 3 are completely consistent in shape. This verifies 
that in the financial risk propagation model, if the proportions of the four parameters 
are the same, the results when the model reaches steady state are also the same, which 
only affects the time when the risk propagation reaches steady state. 

 
(a)                                                             (b) 

Fig. 4. Simulation results of proportional changes in reference group parameters. 

 
(a)                                                          (b) 

 
(c)                                                           (d) 

Fig. 5. Simulation results on risk propagation rate. 
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When simulating with different values of β, the results are shown in Fig. 5. From 
the comparison, reducing the risk propagation rate can significantly improve the pro-
portion of healthy nodes in steady-state. The effective transmission rate decreases, the 
peak value of crisis nodes will significantly decrease, and the time to reach the peak 
will also shift back. This means that when a crisis occurs, if relevant departments or 
economic entities within the system can effectively block the spread of risks, i.e., 
reduce the spread rate, it can significantly prevent the crisis from further expanding. It 
can be seen from the graph that when the effective propagation rate decreases, the 
proportion of crisis nodes developing into bankruptcy nodes will also significantly 
decrease due to the low proportion of crisis nodes. As shown in Fig. 5 (d), when λ= 1 
hour, it can be considered that when the infectious ability and recovery ability are 
equivalent, the risk will hardly spread, and the proportion of crisis nodes will not 
peak, presenting a monotonic decreasing function. The proportion of healthy nodes 
will continue to increase, ultimately occupying the vast majority in steady-state. At 
this time, few economic entities go bankrupt. Especially, when the effective propaga-
tion rate decreases, the proportion of removing the steady-state state also significantly 
decreases, because the number of nodes in crisis state significantly decreases, result-
ing in a significant decrease in the number of nodes transitioning from crisis state to 
recovery state. When the ability of risk propagation in the network is small, we can 
assume that the likelihood of healthy nodes being affected by the crisis is also re-
duced, which means that these healthy nodes can be considered safe. 

 
(a)                                                    (b) 

 
(c)                                                     (d) 

Fig. 6. Simulation results on recovery rate. 
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When γ take different values for simulation, and the results are shown in Fig. 6. 
From the simulation results, increasing the recovery rate is also very significant in 
helping the financial system escape the crisis. When the effective transmission rate λ 
When it is less than or equal to 1, it also shows that the risk will not propagate on a 
large scale in the network. In actual financial networks, the transmission rate is often 
maintained at a high level, and the recovery rate is generally lower than the transmis-
sion rate, which is generally manifested as λ> 1. Therefore, compared with the results 
in Fig.5 (d), Fig. 6 (a) and (b) are the main goals to be achieved by the relevant de-
partments in the crisis, because the marginal revenue to increase the recovery rate is 
generally higher. In addition, Fig. 6 (d) shows the results when the rescue rate is much 
lower than the transmission rate, indicating that the proportion of crisis nodes quickly 
reaches its peak and nearly 60% of nodes will fall into crisis. The proportion of 
healthy nodes quickly bottoms out and will stabilize at a low level, while the propor-
tion of removed state nodes continues to decrease after increasing, while the propor-
tion of bankrupt nodes rapidly increases. If relevant departments do not take measures 
at this time, the result of subsequent development will be that crisis nodes and bank-
ruptcy nodes occupy the main part of the network, and the financial system will be 
severely damaged. When α take different values for simulation, and the results are 
shown in Fig. 7. The results differ significantly from those in Fig. 6 and Fig. 5, which 
can be intuitively observed from the images. As shown in Fig. 7 (a) and Fig. 7 (b), 
when the resistance failure rate decreases, although the proportion of crisis nodes still 
shows a peak similar to the peak in Fig. 3, the subsequent development is more signif-
icant: we obtained a higher proportion of nodes in the recovery state, as well as a 
lower proportion of crisis nodes and bankruptcy nodes. This indicates that reducing 
the failure rate of resistance is effective.  

On the contrary, when the failure rate of resistance increases (as shown in Fig. 7 
(c) and Fig. 7(d)), its negative impact is also quite significant. The proportion of 
healthy nodes and removed nodes will remain low, while nodes in crisis will become 
the mainstream in the network. Over time, the proportion of healthy nodes will stabi-
lize, but the proportion of crisis nodes and removed nodes will continue to decrease, 
while the proportion of bankrupt nodes will rapidly increase. When the actual finan-
cial system encounters a crisis, it is very difficult to avoid economic entities that have 
already emerged from the crisis from falling into the crisis again, and often presents a 
situation where the resistance failure rate is higher than the recovery rate. 

 
(a)                                                     (b) 
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(c)                                                    (d) 

Fig. 7. Simulation results on resistance failure rate. 

When δ take different values for simulation, and the results are shown in Fig. 8. 
Certainly, we hope to see the lower the bankruptcy rate of financial networks during 
crises, the better. The analysis of bankruptcy rate mainly focuses on its destructive 
impact on the financial system. As shown in Fig. 8, the increase in bankruptcy rate 
has a significant impact on the financial network, with the proportion of bankruptcy 
nodes rapidly increasing and occupying an absolute position in the network. 

 
(a)                                                        (b) 

Fig. 8. Simulation results on bankruptcy rate. 

In fact, the first set of parameters selected in this article serves as a reference com-
bination (β,γ,α,δ)= (0.80,0.20,0.05, 0.01) reflects a relatively healthy financial net-
work with good risk management awareness. When financial crises erupt and spread 
on a large scale, the financial system often exhibits characteristics such as lack of 
regulation, poor overall risk management awareness, lack of market liquidity, and 
market panic. At this time, it will exhibit a high transmission rate, resistance failure 
rate, and even a very high bankruptcy rate. Fig. 9 roughly describes this trend, where 
many economic entities in the financial system will quickly go bankrupt. This is basi-
cally the case with the 2007 US subprime crisis and subsequent financial crises. 
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Fig. 9. Simulation results of poor financial system. 

5 Conclusion 

After analyzing the simulation results above, some properties of the financial risk 
contagion process can be summarized as follows. Primarily, the infection rate is di-
rectly proportional to the severity of the infection; The cure rate is inversely propor-
tional to the severity of the infection; The cure failure rate is directly proportional to 
the severity of the infection. Once the virus (or crisis) begins to spread, the cure rate is 
generally lower than the infection rate and cure failure rate. Therefore, the marginal 
benefit of increasing the cure rate is higher than the marginal benefit of reducing the 
infection rate and cure failure rate. If the proportions of the four parameters are the 
same, the infection rate when the model reaches steady state is also the same. The 
steady-state values of infected nodes are only related to the relative ratio between 
parameters, and are not related to their numerical values. From the above properties, 
we can provide ideas and suggestions for dealing with financial risks. 

Since the failure rate of resistance is not only related to the characteristics of crises 
and risks, but also to factors such as the economic strength and risk response strength 
of institutions or enterprises themselves, it is difficult to reduce the failure rate of 
resistance. So, reducing the transmission rate and improving the recovery rate are the 
best choices for relevant departments and institutions, and their essence is to reduce 
the effective transmission rate. In a scale-free financial network, the propagation 
threshold is close to zero, and the effective propagation rate is basically greater than 
the propagation threshold. It means that once a crisis occurs, the risk will spread in the 
network. From previous analysis, it can be concluded that if the risk spreads in the 
network, it will cause damage to the financial system. Therefore, in the early stages of 
risk transmission, regulatory and government departments should take action to re-
duce the effective transmission rate. 
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