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Abstract. This research introduces a predictive model, IFPA-BP, for stock 

price forecasting that optimizes the BP neural network weights and biases using 

the Improved Flower Pollination Optimization Algorithm (IFPA). We ad-

dressed the traditional inflexibility between global and local searches by intro-

ducing the concepts of adaptive conversion probability and temperature. To 

tackle the issue of population diversity, a chaotic reverse initialization strategy 

was employed, significantly reducing the local optimum challenges common 

with conventional flower pollination algorithms. The efficacy of IFPA was 

demonstrated using five benchmark functions. We subsequently used the IFPA-

BP model to forecast the stock prices of Guoxin Securities. Notably, the IFPA-

BP's MSE, MAPE, MAE, and RMSE metrics outperformed those of the tradi-

tional BP model, suggesting superior forecasting ability and providing valuable 

insights for financial investments.  

Keywords: Improved Flower Pollination Optimization Algorithm, BP Neural 

Network, Stock Price, Prediction 
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The conventional Flower Pollination Algorithm (FPA) has been developed based on 

the study of pollen swarm intelligence behavior, drawing inspiration from the natural 

process of flower pollination, and it typically employs mathematical models for opti-

mization [1]. The FPA has demonstrated its efficacy in various fields including algo-

rithm optimization, data processing, and model training. However, with ongoing in-

depth research and increasing real-world applications, certain limitations of the tradi-

tional FPA, such as issues with local optima, convergence speed, and parameter selec-

tion, have become increasingly noticeable. In response to these issues, this paper pro-

poses improvements to the conventional algorithm in areas such as parameter selec-

tion, population diversity, and location changes of algorithmic components. By apply-

ing five distinct test functions to the improved algorithm, experimental analyses 

demonstrate its commendable performance in aspects of convergence speed, optimal 

fitness, and escaping local optima. We applied the Improved FPA (IFPA) to optimize 

a Backpropagation (BP) neural network prediction model (referred to as IFPA-BP) to 
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http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-304-7_26&domain=pdf


forecast the stock prices of Guoxin Securities. Comparative experiments with the 

traditional BP neural network prediction model reveal superior outcomes achieved by 

the IFPA-BP model, underscoring its value as a reference for stock price prediction. 

2 Basic Flower Pollination Algorithm 

The FPA algorithm draws inspiration from the natural process of flower pollination, 

simulating two primary behaviors found in nature: self-pollination and cross-

pollination. Pollinators in this process are classified into two categories: biological 

and non-biological. Specifically, biological pollination, typically carried out by ani-

mals or insects, is viewed as cross-pollination, facilitating wide-ranging dissemina-

tion. In contrast, non-biological pollination, mainly propagated through the wind, is 

considered self-pollination. To leverage FPA for solving optimization problems, the 

algorithm presumes that each plant bears only one flower, and each flower contains 

just one pollen embryo, with each embryo corresponding to a solution within the op-

timization problem. Moreover, the algorithm mandates adherence to the following 

four stipulations. 

1. The process of cross-pollination in plants is analogous to the global search 

phase in the algorithm. During this phase, the global search is conducted using biolog-

ical entities as carriers, following the pattern of Levy flight. 

2. The non-biological self-pollination process equates to the local search phase 

of the algorithm. Here, local search is facilitated through wind-driven pollination 

among plants of the same species. 

3. The probability of reproduction is related to the specific traits of the flowers. 

The similarity and connection between two flowers (or two individual entities within 

the algorithm) are proportionate. 

4. The probability transition parameter p, with a range of [0,1], controls the in-

terchange between global search (or global pollination) and local search (or local 

pollination) within the FPA algorithm. Influenced by factors like location and wind, 

the likelihood of local pollination typically outweighs that of global pollination during 

the entire process. 

Using the rules, we formulated the subsequent mathematical models. 

1. The formula representing pollen's pollination during its global phase [2] 

 𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝐿(𝑋𝑖
𝑡 − 𝑔𝑏𝑒𝑠𝑡) (1) 

In this context,  𝑋𝑖
𝑡+1 and  𝑋𝑖

𝑡 signify the solutions for the t+1 and t generations,  

𝑔𝑏𝑒𝑠𝑡  represents the global optimum achieved in a single iteration. The step size L, 

adheres to the Lévy distribution, and its computational formula is presented below 

 𝐿 ≈
𝜆𝛤(𝜆)sin(𝜋𝜆/2)

𝜋

1

𝑠1+𝜆
𝑆 > 0 (2) 

Within this expression: λ serves as a scaling factor, with reference setting λ=1.5 

[3]; 𝛤(𝜆)  denotes the standard gamma function; and s represents the step length. 

2. The formula for updating position in the local pollination phase [4] 

Stock Price Prediction based on the Improved Flower Pollination             241



 

 

 𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝜀(𝑋𝑗
𝑡 − 𝑋𝑘

𝑡) (3) 

Within the given equation: ε represents a random number uniformly distributed be-

tween [0,1];  𝑋𝑗
𝑡  and  𝑋𝑘

𝑡  correspond to the pollens of two distinct flowers, both from 

the same species. 

3. The mechanism dictating the transition between global and local pollination 

The switch between global and local pollination can be modulated by tuning the 

conversion probability, p, which lies in the interval [0,1]. Extensive simulation exper-

iments demonstrate that setting p to 0.8 allows the algorithm to realize its best search 

performance [5]. 

3 Enhancements to the Flower Pollination Algorithm 

3.1 Initializing the Pollen Population 

The conventional flower pollination algorithm, given its random approach to pollen 

position initialization, struggles with local optimization issues. Addressing this, we 

propose a chaotic reverse initialization approach. Drawing from chaotic mapping and 

reverse learning principles, our method synergizes Logistics mapping, Tent mapping, 

and reverse learning. Introducing a reverse chaotic sequence, we weave the hybrid 

mutation control strategy into the established flower pollination algorithm. On one 

side, the Logistics [6] and Tent mappings guarantee uniform population distribution, 

individual association, and broadened diversity, importing the chaotic mapping's ex-

ploratory, random, and overarching stability attributes into the classic algorithm. 

Conversely, by leveraging the reverse learning strategy, we amplify population diver-

sity and uniformity, broadening the algorithm's search spectrum and embedding re-

verse learning's explorative, random, and holistic adaptiveness [7]. 

Addressing the traditional flower pollination algorithm's limited divergence and 

stability, Logistics mapping ensures an enhanced, uniform population distribution, 

underscoring its inherent diversity. The objective is for the initial solution to be dis-

tributed consistently throughout the search domain. The corresponding formula is 

presented below. 

 𝑥𝑛+1 = 4𝑥𝑛(1 − 𝑥𝑛) 𝑥𝑛 ∈ (0,1) (4) 

Further, to counteract the uneven distribution of the initializing population within 

the search space, we utilize Tent mapping for a refined population mapping. This not 

only ensures uniform population distribution but also articulates the strong interrela-

tion between individuals. Consequently, the exploratory and stochastic traits of chaot-

ic mapping come to the fore, amplifying the algorithm's convergence rate and preci-

sion. The respective formula is presented below. 

 𝑥𝑛+1 = {
𝑥𝑛/𝑎𝑥𝑛 ∈ [0, 𝑎)

(1 − 𝑥𝑛)/(1 − 𝑎)𝑥𝑛 ∈ [𝑎. 1)
 (5) 

In this context, a represents the Tent mapping parameter, set at 0.5. 
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Lastly, in response to the challenges of confined search space, inadequate uni-

formity, and diminished diversity during population initialization, we employ a re-

verse learning approach, superseding the secondary chaotic mapping sequence. This 

step further bolsters both the diversity and uniformity of the population while intro-

ducing an augmented mutation mechanism. The corresponding formula is illustrated 

below. 

 𝑥𝑛+1 = 𝑙𝑏 + 𝑢𝑏 − (𝑢𝑏 + 𝑙𝑏) × 𝑥𝑛 (6) 

Here, 𝑙𝑏 denotes the lower bound, while 𝑢𝑏  signifies the upper bound. 

Leveraging the chaotic reverse initialization strategy, this study markedly reinforc-

es the diversity and uniformity of the initial population. This method effectively miti-

gates the tendency of traditional algorithms to succumb to local optima, leading to 

improved convergence rates and computational precision. 

3.2 Striking a Balance Between Global and Local Search 

In conventional flower pollination algorithms, the consistent fixed value of the switch 

probability p results in a limited adaptability between global and local pollination, 

hampering the algorithm's versatility and efficiency. To counter this, our study intro-

duces an adaptive switch probability enhancement method for equitably balancing 

exploration and exploitation [8]. This approach incorporates a temperature parameter. 

When the overall quality of the population is nearing the global optimum, the temper-

ature is reduced to diminish global search's probability p, favoring a more localized 

search to pinpoint the optimum solution. On the other hand, when the population 

quality is sub-optimal, the temperature increases, boosting the probability of a global 

search p, thereby augmenting the diversity and scope of exploration. 

The core steps of the algorithm include. 

1. Iteration Verification: Initially, ascertain if it's the maiden iteration. If af-

firmative, refrain from altering the temperature T due to the absence of a previous 

optimal fitness benchmark. 

2. Temperature Reduction: If the prevailing optimal fitness falls short of its 

predecessor, the algorithm deduces a proximation to the global optimum and reduces 

the temperature T by multiplying it with a decay coefficient alpha. 

3. Temperature Elevation: Conversely, if the current optimal fitness parallels or 

exceeds its predecessor, the algorithm identifies potential stagnation at a local opti-

mum. This necessitates an increase in temperature T, achieved by dividing it with the 

decay coefficient alpha. 

4. Switch Probability Computation: Based on the ongoing temperature T and it-

eration trajectory, determine the global search switch probability p. 

 p = 0.8 × T × (
t

N
)

1

t
 (7) 

Herein, t symbolizes the iteration count, while N denotes the aggregate iteration 

tally. 

Stock Price Prediction based on the Improved Flower Pollination             243



 

 

4 Results and Discussion 

4.1 Design of the Experiment 

The designated environment for this study operated on an Intel Core™ i7-11800H 

processor, clocked at 2.22GHz, bolstered by 16GB of RAM, under the Windows 11 

64-bit OS. MATLAB R2023a was the chosen simulation platform. 

The primary objective was to ascertain the effectiveness of the enhanced IFPA 

strategy. Comparative simulation experiments were executed across five foundational 

test functions, focusing on the areas of local refinement and expansive global probing. 

Details pertaining to these test functions and their global optima are tabulated in Table 

1. For a holistic perspective, our enhanced flower pollination algorithm was juxta-

posed against its traditional counterpart and the particle swarm optimization algo-

rithm. Consistency was maintained by initializing the population size at 50, conduct-

ing 30 runs, and setting the iteration limit to 100. 

4.2 Analysis of the Results 

From Figures 1 through 5, it's evident that the convergence curve of IFPA undergoes 

distinct iterative shifts. After a short phase of iteration and stabilization, these shifts 

quickly transition into a fresh stage. Such transitions emphasize the algorithm's capac-

ity to leverage the discrete traits inherent in individual solutions. Impressively, the 

algorithm converges swiftly after just a few iterations. Not only has its convergence 

rate been markedly enhanced, but its optimization prowess also notably outstrips that 

of the FPA and PSO algorithms. The test functions are shown in Table 1. 

 

Fig. 1. Test Function 1 

 

Fig. 2. Test Function 2 
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Fig. 3. Test Function 3 

 

Fig. 4. Test Function 4 

 

Fig. 5. Test Function 5 

Table 1. Test Function 

Function Function Name Formula 

F1 Sum of Squares 

Function 
𝑓(𝑥) =∑𝑥𝑖

2 

F2 Sum and Product 

of Absolute Val-

ues Function 

𝑓(𝑥) =∑|𝑥𝑖| +∏|𝑥𝑖| 

F3 Rosenbrock Func-

tion 
𝑓(𝑥) =∑(100(𝑥𝑖+1 + 𝑥𝑖

2)2 + (𝑥𝑖 − 1)
2) 
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F4 Sum of Negative 

Sine Transfor-

mations Function 

𝑓(𝑥) =∑−𝑥𝑖 × sin√|𝑥𝑖| 

F5 Ackley Function 
𝑓(𝑥) = −20𝑒𝑥𝑝(−0.2√

1

𝑛
∑ 𝑥𝑖

2
𝑛

𝑖=1
)

− 𝑒𝑥𝑝(
1

𝑛
∑ cos(2𝜋𝑥𝑖)

𝑛

𝑖=1
) + 20

+ 𝑒 

5 Stock Price Forecasting using IFPA and bp Neural Networks 

5.1 Dataset Preparation 

This study employs a dataset obtained from Tonghuashun, which encompasses Guox-

in Securities stock data from January to June 2023. The dataset features variables like 

opening price, peak price, bottom price, closing price, price increase percentage, fluc-

tuation amplitude, and turnover rate. The predictive goal is the following day's closing 

price. 

For model training, the initial 94 data batches were designated as the training set, 

and the subsequent 24 batches as the test set. Given the disparities in magnitude and 

numerical ranges of the chosen feature variables, normalization was applied to the 

dataset before training and testing to mitigate potential model biases. 

Linear normalization (Min-Max Scaling) was the chosen method, linearly trans-

forming data values into the [0, 1] range. The corresponding formula is: 

 �̂� =
𝑆−min(𝑆)

max(𝑆)−min(𝑆)
 (8) 

Here, �̂� signifies the normalized data, S represents the original data sample, min(S) 

is the sample's minimum value, and max(S) is its maximum value. 

5.2 IFPA-Enhanced Neural Network Prediction Model 

This research introduces the IFPA-BP model, which integrates the improved flower 

pollination algorithm (IFPA) with a BP neural network for predictions [9]. The input 

layer features 7 neuron nodes, while the output layer has a single node. The hidden 

layer comprises 15 nodes. The BP neural network has a combined total of 136 param-

eters for both weights and biases. Seven stock price indicators form the input, and the 

subsequent day's closing stock price constitutes the output. A logistic sigmoid func-

tion (logsig) activates transitions from the input to the hidden layer, while a pure line-

ar function (pureline) is used from the hidden to the output layer. The network's 

weights and biases are treated as IFPA individuals. The fitness function is defined as 

the sum of absolute discrepancies between predicted and real values. Through itera-

tive optimization, the ideal individual with the minimal fitness function value emerg-

es. After training on the dataset, the weights and biases of the IFPA-BP structure are 
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finalized for predictions. The objective of this approach is to bolster the model's pre-

dictive efficiency and augment stock price forecasting accuracy. 

BP Neural Network Prediction Workflow [10]. 

1. Network Initialization: Set the initial weights and biases. 

2. Calculation of Hidden Layer Output: The hidden layer's activation function, 

the logistic sigmoid function (logsig) is applied. 

3. Calculation of Output Layer: A linear transfer function (purelin) is used. 

4. Error Calculation. 

5. Update Weights & Biases: Following error identification, backpropagation 

based on this error adjusts the network's weights and biases until reaching either the 

maximum iteration count or the targeted error, resulting in final weight and bias val-

ues. 

6. Forecasting: Using the derived weights and biases, the BP neural network 

makes its predictions. 

In this study, the IFPA-BP model's steps are 

1. Parameter Initialization - This includes setting the pollen count, their initial 

positions, and the iteration limit. 

2. Each pollen entity is associated with the BP neural weights and biases. The 

IFPA fitness function uses these, with the actual and estimated values. 

3. Apply the IFPA method, using formulas to adjust the pollen's positions. 

4. If the end conditions aren't met, revert to Step 2. Otherwise, continue to Step 

5. 

5. The best entity is mapped to the BP neural weights and biases, followed by 

neural network training and testing. 

5.3 IFPA-Enhanced Neural Network Prediction Model 

Within the IFPA framework, we set the total population size to 50 and capped itera-

tions at 100. To assess the predictive performance of our IFPA-BP model, it was jux-

taposed against the standard BP neural network. The comparative predictive results 

are displayed in Figure 6. For a comprehensive evaluation, we employed metrics such 

as MSE (Mean Square Error), MAPE (Mean Absolute Percentage Error), MAE 

(Mean Absolute Error), and RMSE (Root Mean Square Error), with the respective 

error data outlined in Table 2. Our findings underscore that integrating the IFPA 

methodology effectively fine-tunes the BP neural network parameters, rendering the 

IFPA-BP model adept at more precise stock price predictions. 

Table 2. Comparison of Prediction Errors for Stock Price Among Various Models 

Model MSE MAPE/% MAE RMSE 

IFPA-BP 0.018503 1.0833% 0.096467 0.13603 

BP 0.10496 2.5411% 0.22303 0.32398 
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Fig. 6. Comparison Chart of Predicted Values and True Values for IFPABP Neural Network 

Test Samples 

The experimental findings demonstrate that the IFPA algorithm effectively opti-

mizes the parameters of the BP neural network, enabling the constructed IFPA-BP 

model to yield more precise stock price predictions. 

6 Conclusion 

This study scrutinized the limitations of the conventional Flower Pollination Algo-

rithm (FPA) and implemented enhancements from both optimization and applicability 

standpoints. These modifications addressed two distinct aspects of the traditional 

algorithm. By employing five test functions in conjunction with pertinent data, vari-

ous experimental results were obtained. Across multiple dimensions of assessment, 

the algorithm introduced in this study outperforms its traditional counterpart, demon-

strating commendable convergence and robustness. Concurrently, an IFPA-BP predic-

tive model was constructed, leveraging the synergistic integration of IFPA with BP 

neural networks, to forecast the stock prices of Cathay Securities. The empirical out-

comes affirm that the devised IFPA-BP model excels in prediction precision, stability, 

and demonstrates notable generalization capabilities. 

In subsequent research endeavors, there is potential for further refinement of the 

FPA algorithm from different angles, aimed at elevating its performance. Further-

more, its integration with additional machine learning strategies can be explored to 

address a diverse array of predictive challenges, ultimately seeking to bolster both the 

accuracy and stability of such forecasts. 
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