
Research on Software Test Coverage Analysis Methods

Under DO-178C

Shuang Chen

Shanghai Aircraft design and research institute, Shanghai, China

Abstract. Based on the DO-178C's software test coverage analysis objective re-

quirements, combined with the actual situation of software engineering, three

types of test coverage analysis methods are sorted out and studied. The method

is applicable to civil aircraft airborne software testing activities, and also appli-

cable as a kind of supplementary analysis for general software testing.

Keywords: Airborne Software; DO-178C; Airworthiness; MC/DC; Data Cou-

pling; Control Coupling

1 Introduction

In the field of civil aircraft airworthiness, DO-178C[1] puts forward the requirements of

software test coverage analysis in the process of civil aircraft development life cycle,

with the main purpose of evaluating the adequacy and completeness of software test

work. Based on the basic requirements of test coverage analysis proposed by DO-178C,

this paper proposes strategies and methods to meet the requirements of airworthiness

test coverage analysis in combination with the actual situation of software engineering.

2 Test Coverage Analysis Requirements

The requirements for test coverage analysis are presented in Objectives 3 through 8 in

Appendix Table A-7 Validation of Validation Process Results of DO-178C, as shown

in Figure 1.

© The Author(s) 2023
C. Chen et al. (eds.), Proceedings of the 3rd International Conference on Digital Economy and Computer
Application (DECA 2023), Atlantis Highlights in Computer Sciences 17,
https://doi.org/10.2991/978-94-6463-304-7_29

https://doi.org/10.2991/978-94-6463-304-7_29
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-304-7_29&domain=pdf

Fig. 1. DO-178C Test Coverage Analysis Objectives.

The test coverage analysis required by DO-178C can be broken down into three cat-

egories:

• Requirements coverage analysis;

• Structural coverage analysis;

• Data coupling and control coupling analysis.

In this paper, we will explain each of the above three analysis methods in terms of

definition, scope of application, and analysis method.

2.1 Requirements coverage analysis

Requirements coverage analysis is the process of analysing the correspondence be-

tween test cases and the software high-level and low-level requirements to determine

whether the selected test cases can satisfy:

• Each requirement has corresponding test cases which cover both normal func-

tionality tests and robustness tests;

• Each test case can be traced to the corresponding requirement.

In response to the above requirements coverage analysis criteria, the coverage anal-

ysis for high-level requirements applies to DO-178C-defined Level A, B, C, and D

266 S. Chen

software, and the coverage analysis for low-level requirements applies to DO-178C-

defined Level A, B, and C software.

2.2 Structural coverage analysis

Structural coverage analysis reflects how well the software source code implements the

software requirements and is intended to demonstrate the adequacy of requirements-

based testing by providing evidence that the structure of the code has been verified to

the level of rigor required by the software level.

The structural coverage criteria required by DO-178C include:

• Statement Coverage (SC);

• Decision Coverage (DC);

• Modified Condition/Decision Coverage (MC/DC).

In this paper, we will illustrate the basic ideas and coverage methods of the 3 types

of structural coverage with the example in Figure 2.

A || (B &&C)

Start

Z = TRUEY

N

End

Pseudo Code：
if (A || (B && C))
 {
 Z = TRUE;
 }
...

Fig. 2. Example of structural coverage.

As seen in Figure 2, the example contains 2 statements, 1 decision, and 3 conditions:

• Statement 1: if (A || (B && C));

• Statement 2: Z = TRUE;

• Decision 1: (A || (B && C);

o Condition 1 : A;

o Condition 2 : B;

o Condition 3 : C.

Research on Software Test Coverage Analysis Methods Under DO-178C 267

2.2.1 Statement coverage (SC)

The statement coverage objectives apply to Level A, B, and C software as defined

in DO-178C. The relevant definitions used in this paper are listed below:

• Statement Coverage: Every statement in the program has been invoked at least

once.

Taking the program in Figure 2 as an example, to execute each statement in the pro-

gram at least once, i.e., to satisfy the SC coverage requirement, only one test case TC-

1 is needed, as shown in Table 1.

Table 1. Test cases that satisfy statement coverage

Test case Input A Input B Input C Decision Result Output Z

TC-1 T T F T T

In the above example, although it is possible to cover all statements, the test design

does not consider all cases of the value of Decision 1, nor does it focus on the value of

each condition in Decision 1. Therefore, we consider statement coverage to be a weaker

structural coverage criteria.

2.2.2 Decision coverage (DC)

The decision coverage objectives apply to Level A and B software as defined in DO-

178C. The relevant definitions used in this paper are listed below:

• Decision Coverage: Every point of entry and exit in the program has been in-

voked at least once and every decision in the program has taken on all possible

outcomes at least once.

• Condition: A Boolean expression containing no Boolean operators except for

the unary operator (NOT).

• Decision: A Boolean expression composed of conditions and zero or more Bool-

ean operators. If a condition appears more than once in a decision, each occur-

rence is a unique condition.

Take C language for example, the statements in a program that contain decisions

include:

• Double-valued decision:

o if...else if...else;

o while...;

o do...while...;

o for;

• Multivalued decision:

o Switch...case...;

The basic idea of decision coverage and coverage methods are illustrated below by

the example in Figure 2.

As seen in Figure 2, two test cases TC-2 and TC-3 (see Table 2) are needed for each

exit and entry in the program to be executed at least once and for all possible outcomes

of each decision to be valued at least once, i.e., to satisfy the decision coverage criteria.

268 S. Chen

Table 2. Test cases that satisfy statement coverage

Test case Input A Input B Input C
Decision Re-

sult
Output Z

TC-2 T F F T T

TC-3 F F F F Xa
a X means that the value of Z is unknown, because the value of Z was not explicitly

changed when the decision is determined to be false in this example.

It can be seen that TC-2 and TC-3 consider all possible values of Decision 1 and are

also able to cover all values of Condition A, but still do not consider all values of B

and C and their effect on the outcome of Decision 1. This introduces a more compre-

hensive coverage as MC/DC criteria.

2.2.3 Modified condition/decision coverage (MC/DC)

Modified condition/decision coverage objectives apply to Level A software as de-

fined in DO-178C. The relevant definitions used in this document are listed below:

• Modified Condition/Decision Coverage: Every entry and exit point in the pro-

gram has been invoked at least once, every condition in a decision in the pro-

gram has taken all possible outcomes at least once, every decision in the pro-

gram has taken all possible outcomes at least once, and each condition in a de-

cision has been shown to independently affect that decision's outcome. A con-

dition is shown to independently affect a decision outcome by: (1) varying just

that condition while holding fixed all other possible conditions, or (2) varying

just that condition while holding fixed all other possible conditions that could

affect the outcome.

The modified condition/decision coverage, which is rarely mentioned in other soft-

ware engineering fields, was developed specifically for the aviation industry and is in-

tended to serve as a comprehensive criteria for evaluating software test completion with

more comprehensive coverage.

The basic idea of modified condition/decision coverage and the coverage method are

illustrated below with the example in Figure 2.

As seen in Figure 2, for the test to satisfy the modified condition/decision coverage

criteria, it is necessary to consider the two values of T/F for Decision 1, as well as the

respective values of T/F for Conditions A, Conditions B, and Conditions C, and that

these conditions independently affect the decision outcome.

By definition, at least N+1 test cases (N is the number of conditions determined) are

needed to fulfill the above criteria. In this case N is 3, so one possible combination of

test cases contains 4 TCs, as shown in Table 3.

Table 3. Test cases that satisfy modified condition/decision coverage

Test case Input A Input B Input C
Decision Re-

sult
Output Z

TC-4 T T F T T

TC-5 F T F F Xa

Research on Software Test Coverage Analysis Methods Under DO-178C 269

TC-6 F T T T T

TC-7 F F T F Xa
a X means that the value of Z is unknown, because the value of Z was not explicitly

changed when decision is determined to be false in this example.

TC-4 and TC-5, which together satisfy Condition A independently affect the deci-

sion results; TC-6 and TC-7, which together satisfy Condition B independently affect

the decision results; and TC-5 and TC-6, which together satisfy Condition C inde-

pendently affect the decision results.

Compared to SC and DC, we consider MC/DC to be a more complete structural

coverage criteria This is because it focuses not only on all the cases of all the values of

all the decisions in the program, but also on all the possible executions of each condition

in the decisions.

2.3 Data coupling and control coupling analysis

The data coupling and control coupling analysis objectives apply to Level A, B, and C

software as defined by DO-178C. The relevant definitions used in this paper are listed

below:

• Data Coupling: The dependence of a software component on data not exclu-

sively under the control of that software component.

• Control Coupling: The manner or degree by which one software component in-

fluences the execution of another software component.

• Software Component: A self-contained software module/unit/function that per-

forms a clear function of the program.

Data coupling and control coupling analysis actually belongs to one aspect of struc-

tural coverage analysis, and like SC, DC, and MC/DC analysis, data coupling and con-

trol coupling analysis is performed for requirements-based software testing and is a

measure of the adequacy of software integration testing and/or hardware and software

integration testing. Its purpose is to ensure that the interactions and dependencies be-

tween individual software modules/components are correct and that the components

interact with each other as intended by the software design.

Common data coupling scenarios may include component A using values calculated

by component B, or using global variables, or component A exchanging input and out-

put information with component B by data parameter passing.

Common control coupling scenarios may include component A controlling a func-

tional branch of component B by passing parameters.

Data coupling and control coupling are concerned with the actual dependencies be-

tween software components, and the article by Chilenski and Kurtz[2] identifies four

types of coupled dependencies:

• Sequencing dependencies, a part of control coupling, are requirements on the

execution order of modules, components, and applications.

• Timing dependencies, a part of control coupling, are requirements on the timing

of individual modules, components, applications, and sequences of multiple

components.

270 S. Chen

• Control flow dependencies, part of control coupling, are represented by control

dependences between modules, components, and applications. This is divided

into sequencing dependencies and data dependencies within branch points.

• Information flow dependencies, part of data coupling, are represented by data

flows between modules, components, and applications where one module, com-

ponent, or application defines the value of an object/data item that is used in

another module, component, or application (data dependences).

The call tree, the compiler's linking instructions, and link mapping are a few mech-

anisms that affect these dependencies. These mechanisms depend on the programming

language, runtime support, and hardware used. Study of the above is beyond the scope

of this paper.

3 Test coverage analysis methods

In conjunction with the definitions of the three test coverage analysis methods in the

previous section, this paper presents here the recommended specific implementation of

coverage analysis.

3.1 Requirements coverage analysis methods

The activity of requirements coverage analysis can be performed after the software test

cases and protocols have been prepared. Requirements coverage analysis can usually

only be accomplished by manual analysis, and the analysis procedures described in this

paper are as follows:

• The software requirements are used as an index to find out all the test cases

corresponding to a software requirement with the help of a traceability matrix

between software requirements and software test cases.

• Analyse the test points present in the software requirements, which may include:

o Normal function point of the software.

o Branches.

o Normal value range (equivalence class);

o Abnormal value range.

o Boundary values.

o Time-dependent multi cycle.

o Trigger conditions and state migration for state machines.

o Invalid transitions of state machines.

o Software robustness considerations.

o Other special case for software testing design.

• Ensure that all test points are covered by at least one test case.

• Add test cases for uncovered test points.

• For the content that is not clear in the requirements, such as the behaviour or

handling of the abnormal state of the software, etc., the test cases should be

supplemented first after adding additional information in the requirements.

Research on Software Test Coverage Analysis Methods Under DO-178C 271

Requirements coverage analysis is considered not complicated, and the above steps

should be completed separately for test coverage analysis of high-level requirements

and test coverage analysis of low-level requirements.

3.2 Structural coverage analysis methods

Structural coverage analysis is usually analysed by tools due to the huge amount of

work and well-defined rules. Currently, there are a large number of mature automated

tools supporting SC, DC, MC/DC analysis, such as Testbed, C++ Test, RTRT, Code

Test, Vector Cast, Cantata, Tessy, Test Grid, etc.

The work procedures for conducting a structural coverage analysis using the tool

include:

• Deployment of tool environments, generally supported by the tool developer.

• Write requirements-based test cases and test procedures.

• Use tools to perform automated insertion of stakes, staking and generation of

test drivers.

• Execute automated tests using a tool (some tools also support tests that do not

require the tool to be used to execute them) on instrument code.

• The tool analyses the coverage raw data generated after the instrument code has

passed the test execution and generates a report on the structural coverage re-

sults corresponding to this test execution.

• Manually review the structural coverage results report to find the code that in-

dicates that it is not covered and provide a reasonable explanation.

Since the above methods trusts the coverage information collected by the tool, tool

qualification is needs for the structural coverage analysis tool in accordance with DO-

330[3] as required by DO-178C.

Generally, the coverage analysis report generated by the tool may detect some un-

covered code structures that require additional manual analysis, typically including:

• Protective code, such as extra default statements in case statements, unreachable

else branches in if statements, array bounds checking, data range checking, and

so on.

• Deactivated code, including code that is not intended to be executed in any con-

figuration of the product and code that can only be executed in certain configu-

rations of the target environment.

• Exception handling code, which can only be executed to in some special cases

and cannot be executed by testing.

There are also a lot of research being done on MC/DC compliant test methods. Ro-

haida Romli[4] proposed a method that utilizes MC/DC coverage criteria to support

more thorough automated test data generation for dynamic-structural testing in auto-

matic programming assessment. LIU Huiying[5] proposed an improved Whale Genetic

Algorithm for generating test data required for unit testing MC/DC coverage. Hong

WJ[6] conducted a number of experiments using advanced symbolic execution tools to

study the impact of compiler optimization on the use of symbolic execution to satisfy

program MC/DC.

272 S. Chen

3.3 Methods for analyzing data coupling and control coupling

The pre-work of data coupling and control coupling analysis should be initiated in the

software design phase. This paper presents a proposed methodology for data coupling

and control coupling analysis, with specific steps including:

• Review software architecture design: Confirms that data structures, software ar-

chitecture, internal and external inputs/outputs, data and control flows, schedul-

ing processes and inter-processor/inter-task communication mechanisms, parti-

tioning methods, and descriptions of software components are defined in the

architectural design.

• Review software source code: Confirm that the source code conforms to the data

and control flows in the software architecture.

• Analyse software architecture: Identify the specific coupling relationships in

each data coupling and control coupling in the architectural design and deter-

mine the corresponding coupling coverage criteria and coupling coverage points.

• Analyse the requirements-based test cases and select the test cases related to the

coupling points.

• Execute tests, record test results, and analyse coverage of data coupling and

control coupling during testing.

• For coupling points that fail the test, or lack test cases, analyse the reason, sup-

plement the test cases if necessary, and correct them.

• Summarize the results of the data coupling and control coupling analyses and

prepare a coupling analysis report.

In the coupling analysis report, the sources of coupling are detailed in a paired con-

sumer and producer format. For each data coupling, the component that produces the

data and the component that consumes the data are covered in at least one test case. For

each control coupling, the caller component and the called component are verified in at

least one test case. To visualize and understand this information more visually, use a

spreadsheet that lists each pair of couplings and the corresponding validation cases.

There have also been many other studies on data coupling and control coupling in

recent years. Xia XF[8] used the radio interface software as an example, the methodol-

ogy and process for meeting the data coupling and control coupling coverage objectives

of DO-178C are described in detail. Kong DQ[9] summarized the issues related to data

coupling and control coupling that should be considered in all aspects of software plan-

ning, development, and validation

4 Experiments and Analysis

We compare 3 types of structural coverage methods in a real C program called TCAS

which includes branch such as if…else, switch, while, and multi-conditions decisions.

All resources are obtained from SIR (Software Infrastructure Repository) [10].

The requirement specification of TCAS indicates that it has 12 input variables in-

cluding 10 Integer and 2 Boolean variables. The detail information of these inputs and

the required binary bits for conversion are shown in Table 4.

Research on Software Test Coverage Analysis Methods Under DO-178C 273

Table 4. Input Variables Information for TCAS

Variable Name Type Value

Cur_Vertical_Sep int [0,2000]

High_Confidence bool 0,1

Two_of_Three_Reports_Valid bool 0,1

Own_Tracked_Alt int [0,6000]

Own_Tracked_Alt_Rate int [0,1000]

Other_Tracked_Alt int [0,6000]

Alt_Layer_Value int 0,1,2,3

Up_Separation int [0,1000]

Down_Separation int [0,1000]

Other_RAC int 0,1,2

Other_Capability int 1,2

Climb_Inhibit int 0,1

We generated 1000 test random test cases and executed them on TCAS and then

collected coverage information. Table 5 and Figure 3 show the coverage curves of the

experiment results on the TCAS program.

Table 5. Coverage for SC, DC and MC/DC

Num of Test Cases SC DC MC/DC

50 57.35% 12.50% 24.32%

100 91.18% 62.50% 43.24%

150 91.18% 62.50% 43.24%

200 91.18% 62.50% 54.05%

250 91.18% 62.50% 54.05%

300 91.18% 62.50% 54.05%

350 91.18% 62.50% 54.05%

400 91.18% 62.50% 54.05%

450 91.18% 62.50% 54.05%

500 94.12% 75.00% 59.46%

550 95.59% 81.25% 59.46%

600 95.59% 81.25% 59.46%

650 95.59% 81.25% 59.46%

700 95.59% 81.25% 59.46%

750 95.59% 81.25% 64.86%

800 95.59% 81.25% 64.86%

850 97.06% 87.50% 76.58%

900 97.06% 87.50% 76.58%

950 98.53% 93.75% 83.78%

1000 98.53% 93.75% 83.78%

274 S. Chen

Fig. 3. Structural Coverage for TCAS Program

As mentioned earlier, 1000 random test cases were used in this experiment. We did

not intentionally supplement or modify the test cases, so all types of coverage fell short

of 100%. In particular, it should be noted that there is unreachable code structure in the

TCAS program, so that even the SC does not reach 100%.

From this experiment, SC is the easiest of the three structural coverings to satisfy,

while MC/DC is the most difficult. Therefore, it is appropriate and reasonable for DO-

178C to impose structural coverage requirements corresponding to different levels of

airborne software.

5 Conclusion

This paper examines and summarizes the requirements and analysis methods for test

coverage analysis of airborne software. Further research includes practicing and im-

proving the methodology in more actual airborne software projects.

References

1. RTCA. (2011) DO-178C Software Considerations in Airborne Systems and Equipment Cer-

tification. Washington.

2. Chilenski J and Kurtz J. (2007) Object-Oriented Technology Verification Phase 2 Hand-

book—Data Coupling and Control Coupling. DOT/FAA/AR-07/19: 12-13.

3. RTCA. (2011) DO-330 Software Tool Qualification Considerations. Washing-

ton.

4. Rohaida R, Shahadath S, Mazni O, Musyrifah M. (2020) Automated Test Cases and Test

Data Generation for Dynamic Structural Testing in Automatic Programming Assessment

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

5
5

0

6
0

0

6
5

0

7
0

0

7
5

0

8
0

0

8
5

0

9
0

0

9
5

0

1
0

0
0

C
o

verage(%
)

Test Case Number

Structural Coverage

SC DC MC/DC

Research on Software Test Coverage Analysis Methods Under DO-178C 275

Using MC/DC. International Journal on Advanced Science, Engineering and Information

Technology. Volume 10 , Issue 1. 120-127.

5. Liu HY et al. (2022) MC/DC Test Data Generation Algorithm Based on Whale Genetic

Algorithm. Instrumentation,9(02):1-12.

6. Hong WJ et al. (2020) Symbolic execution compilation optimization for MC/DC. Frontiers

of Information Technology & Electronic Engineering,21(09):1267-1285.

7. Zhu WZ. (2022) Coverage analysis work for data coupling and control coupling. China Sci-

ence and Technology Information,2022(16):28-30.

8. Xia XF. (2019) Realization of data coupling and control coupling coverage objectives for

radio interface unit software. Computer Applications and Software,36(01):34-38+44.

9. Kong DQ. (2018) An overview of the realization of data coupling and control coupling ob-

jectives in DO-178C. Aviation Computing Technology,48(05):56-58.

10. D. Hyunsook, E. Sebastian, R. Gregg (2005), Supporting controlled experimentation with

testing techniques: an infrastructure and its potential impact, Empirical Software Engineer-

ing, 10(4): 405-435.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
 The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

276 S. Chen

http://creativecommons.org/licenses/by-nc/4.0/

	Research on Software Test Coverage Analysis Methods Under DO-178C

