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Abstract. In order to analyze the influence of flexural stiffness on the frequency 

of short boom, the calculation accuracy of natural vibration frequency of short 

boom cable force is low. Based on the existing formula for calculating natural 

vibration frequency of the cable with fixed supports at both ends and considering 

the non-linear vibration of the cable, the finite element model considering the 

flexural stiffness of the derrick is established in combination with the finite ele-

ment software in a practical project, and the influence of the flexural stiffness on 

the cable force of the derrick of different lengths is analyzed. The modified for-

mula of theoretical frequency is fitted. The analysis shows that the flexural stiff-

ness has a great influence on the recognition of the natural vibration frequency of 

the short boom, which leads to the low recognition accuracy in the short boom, 

and can not be directly used to identify and judge the frequency of the short boom. 

According to different boom lengths, the theoretical frequency is fitted with the 

measured natural vibration frequency, and the correction formula of the first or-

der natural vibration frequency is obtained. Compared with the traditional boom 

frequency calculation formula, the error of natural vibration frequency identifi-

cation can be controlled within plus or minus 5% by using the revised formula. 

Keywords: determined short suspender frequency; frequency method; boundary 

conditions; flexural stiffenss 

1 Introduction 

Suspender is one of the key components that bear forces in a tied-arch bridge with a 

middle and lower bearing system. It directly carries and transfers loads from the main 

girder and arch ribs. Due to the multiple statically indeterminate nature of a tied-arch 

bridge, any change in the suspender force will result in a redistribution of internal forces 

and alter the structural load distribution. Therefore, accurate identification of the sus-

pender force is crucial. The main methods for testing suspender forces include the fre-

quency method, magnetic flux method, and hydraulic pressure gauge method. 

Currently, the frequency method is the primary approach for testing suspender 

forces, as it offers simplicity, cost-effectiveness, practicality, and applicability to vari-

ous types of suspenders. It is widely used in bridge health monitoring. A significant  
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amount of research has been conducted by domestic and international scholars on the 
calculation formulas and frequency identification of suspender forces based on the fre-
quency method. Yan Qiqing et al.[1] analyzed the factors influencing the accuracy of 
suspender force testing and proposed a force calculation formula by introducing bound-
ary correction coefficients and force deviation coefficients. Dai Jinpeng et al.[2] intro-
duced the concept of suspender length correction coefficient and fitted a calculation 
formula for the length correction coefficient of suspenders. Zhang Rongling et al.[3] 

established a suspender force calculation formula considering the coupling effects of 
bending stiffness, shear deformation, and rotational inertia under the boundary condi-
tions of hinged supports at both ends. He Rong et al.[4] considered complex boundary 
conditions such as temperature effects and established an implicit equation for sus-
pender force by introducing boundary influence coefficients to improve the accuracy 
of practical calculation formulas. Ai Yulin et al.[5] analyzed the influence of fork ears 
on suspender forces and introduced the boundary conditions of one end hinged and one 
end fixed, deriving an explicit expression for suspender force and natural frequency 
using the energy method. Ran Zhihong et al.[6] erived the frequency calculation formula 
for cable-stayed bridges based on the boundary conditions of both ends fixed using the 
singular perturbation method. Armin et al.[7]derived the frequency equation for sus-
penders based on their bending stiffness and sag extension characteristics. Kim[8] im-
proved the accuracy of suspender natural frequency testing and identification using dig-
ital processing techniques. Yan[9]optimized the relationship between cable force and 
natural frequency through visual tracking and analysis, making it applicable to any 
boundary conditions. 

In order to accurately determine the natural frequency of the suspender when it is 
tensioned to the target force and thus monitor the tensioning of the suspender accu-
rately, the existing suspender force calculation formulas are combined. The influence 
of bending stiffness on suspender force calculation for different suspender lengths is 
taken into account. The suspender length is divided into three calculation ranges, and 
by fitting the theoretical frequency with the measured frequency, a correction formula 
for the theoretical frequency is obtained. This formula is applied to the construction 
monitoring of suspender tensioning in a certain steel tube concrete suspenders of an 
underslung arch bridge, resulting in precise testing results. 

2 Force analysis of suspender and solution of vibration 
equation 

Due to the influence of the lateral bending stiffness on the calculation of suspender 
forces, the following basic assumptions are made for the suspender: ①. The suspender 
is made of flexible homogeneous material, and the effect of suspender forces on sus-
pender linear density is disregarded.②. The suspender undergoes parabolic vibrations 
only in the lateral plane, and the effects of self-weight shear deformation and damping 
are neglected.③. The suspender is not subjected to lateral forces, and the axial displace-
ment is very small and can be neglected. Due to the relatively small and short suspender 
inclination compared to cable-stayed bridges, the influence of suspender sag can be 
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disregarded. Based on the above analysis and assumptions, the force analysis of the 
suspender is established as shown in Figure 1. By applying the Euler-Bernoulli beam 
theory, the undamped vibration differential equation for the suspender is derived as 
follows: 
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When neglecting external forces acting on the suspender, the equation can be simplified 
to: 
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In the above formula, T is the cable force of the boom, EI is the flexural stiffness of the 
boom, ( , )y x t  is the lateral displacement function of the boom vibration, m is the linear 

density of the boom, and l is the length of the boom. 
The displacement function ( , )y x t  can be expressed as:  

 ( , ) ( ) sin( )y x t x t      (3) 

using the method of separating variables and trigonometric function and shape function. 
In the above formula,   is the natural vibration circle frequency of the boom;   is 

the phase angle; The relation between circular frequency   and engineering frequency 
f is as follows: 2 f  ; t is the time. 

Substituting equation (3) into equation (2), we obtain: 

 (4) 2( ) "( ) ( ) 0EI x T x m x       (4) 
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Fig. 1. Force diagram of the micro-element of suspender 
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3 Practical formula for calculating the cable force of the 
suspender of tied arch bridge 

Assuming the boundary condition of the hanger rod is hinged and considering the effect 
of flexural stiffness on the tension of the hanger rod, solving equation (4) yields the 
vibration mode equation of the hanger rod as follows: 

  (5) 

FANG[10] and others obtained the frequency equation for the first-order free vibration 
of the hanger rod by solving equation (5) as follows: 

  (6) 

In the equation, 1 2 3 4, , ,A A A A  represents an undetermined constant;

;  

Based on the energy method, substituting the boundary condition of one end hinged 
and one end fixed into equation (5), the frequency equation for the first-order free vi-
bration of the hanger rod is obtained as[11]: 

  (7) 

Based on the boundary condition of both ends being fixed, introducing the eigenvalue 
λ and the high-order small quantity bending stiffness coefficient α, we substitute them 
into equation (5), yielding: 

  (8) 

Due to the high-order small quantity nature of the bending stiffness coefficient α, which 
appears in higher-order terms, it introduces singular perturbations to the governing 
equation (8) and results in boundary layer effects [12][13]. Building upon this, in ref-
erence [6], the boundary layer type function singular perturbation method is applied to 
solve equation (8), resulting in the calculation of cable frequencies as follows: 

  (9) 

In the equation, represents the difference between the modified eigenvalue T and β, 
which is only related to the sag, while the meanings of other symbols remain the same. 
Equation (9) represents the formula for calculating the cable tension under the condition 
of both ends being fixed. For the hanger, the correction value can be ignored. Therefore, 
the calculation formula for the engineering frequency equation of the 1st-order free 
vibration of the hanger under the condition of both ends being fixed is as follows: 
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In the equation,   represents the modified characteristic value considering the sag 

effect, and it is the difference between 2 2n   and 0 , which is only related to the sag. 

The meanings of other symbols remain the same as before. Equation (9) represents the 
formula for calculating the cable tension under the condition of both ends fixed. For the 
case of a hanger rod, the correction value   can be ignored. Therefore, the engineer-
ing frequency equation for the first-order free vibration of the hanger rod under the 
condition of both ends fixed is given by: 

  (10) 
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4 Frequency calculation and analysis 

4.1 Experimental Overview and Data Acquisition 

The study focuses on an actual engineering project of a 64m simply supported lower-
bound arch bridge with steel-concrete composite girders. The suspension cables used 
in the bridge are pre-stressed PES(C)7-109 strands with a diameter of φ7 mm. These 
high-strength galvanized steel strands have a standard strength of 1670 MPa and an 
elastic modulus of 195 GPa. The diameter of the suspension cables is 97mm, and the 
unit mass per length is 35.7 kg/m. The bending moment of inertia of the suspension 
cables is I = 2.049×10−6m4. The suspension cables are arranged in parallel with a spac-
ing of 5.5m. The entire bridge is equipped with a total of 9 pairs of suspension cables, 
totaling 18 strands. The construction of the bridge follows the sequence of girder place-
ment followed by arch construction. The installation and tensioning of the suspension 
cables take place when the concrete strength of the arch ribs reaches 95%. The elevation 
diagram of the bridge is shown in Figure 2. 
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Fig. 2. Suspender number and arrangement 

The order of tensioning the suspension cables is as follows: Suspension Cable 5, Sus-
pension Cable 2, Suspension Cable 4, Suspension Cable 3, Suspension Cable 1. The 
results of the natural frequency readings during the tensioning and calibration of the 
suspension cables are shown in Table 1. (Due to space limitations, only partial test 
results are provided). 

Table 1. The suspender tension and vibration frequency   

suspender num-
ber 

l/m T/kN Frequency order f/Hz 

1 
7.699 1161.5 1 13.338 
7.699 1891.3 1 14.385 

2 
10.923 1142.5 1 12.974 
10.923 1740.8 1 15.437 

3 
13.207 1097.5 1 10.206 
13.207 1791.3 1 11.944 

4 
14.556 1165.9 1 8.418 
14.556 1937.1 1 10.252 

5 
14.974 1183.8 1 8.253 
14.974 1891.3 1 10.118 

4.2 Finite Element Analysis 

A finite element model was established using the ANSYS finite element software. The 
entire length of the suspension cable was simulated using beam elements, and the 
boundary conditions at both ends were set as fixed supports. By applying prestressing 
commands, the suspension cable was subjected to a specific tension. Modal analysis 
was performed on models with different lengths of the suspension cable under the same 
tension to extract the first natural frequencies of each suspension cable. These frequen-
cies were compared with the measured frequencies of the suspension cables and the 
frequencies obtained from the modified formula in this study. The analysis focused on 
the natural frequencies of selected suspension cables at tension forces of 720 kN and 
1200 kN. The comparison of frequencies is shown in Fig 3. 

Comparing the frequencies obtained from finite element calculations with the meas-
ured frequencies, it can be observed that for shorter cable lengths, the influence of bend-
ing stiffness on the natural frequencies of the suspension cable is significant. The finite 
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element method tends to overestimate the natural frequencies, resulting in lower accu-
racy. However, as the cable length increases, the influence of bending stiffness on the 
natural frequencies diminishes, and the finite element analysis can yield more accurate 
results. Comparing the calculated theoretical frequencies with the measured frequen-
cies, it is evident that for shorter cable lengths (less than 7.699 meters), the frequencies 
calculated using Equation (10) are lower than the measured frequencies. For cable 
lengths between DG2 and DG3, there is a significant discrepancy between the calcu-
lated frequencies and the measured frequencies. However, as the cable length increases, 
the discrepancy between the calculated frequencies and the measured frequencies de-
creases. Based on the above analysis, the cable lengths are divided into three categories: 
short cables (0-7.699 meters), medium-length cables (8 meters to 13.207 meters), and 
long cables (13.207 meters and above).  

 
(a) 720kN  

 
(b) 1200kN 

Fig. 3. frequency changes with suspender length 
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4.3 Theoretical frequency calculation correction 

Based on the analysis in Section 3.1, it is evident that the error between the theoretical 
frequency obtained from Equation (10) and the measured frequency is significant. To 
address this, a fitting approach is applied to modify the theoretical frequency. Based on 
the curve fitting analysis of the measured frequencies and theoretical frequencies as 
shown in Fig 4, the following formula is derived to modify the theoretical frequencies 
of the suspender: 

  (11) 

 
      (a) Short hanging                               (b) Medium and long hanging 

 
(c) long hanging 

Fig. 4. Fitted relationship between theoretic frequency and measured frequency 

4.4 Data analysis Numerical simulation analysis 

In order to verify the accuracy of formula (11) in identifying boom frequency in actual 
projects, the initial tension of part of the boom of the 80m concrete-filled steel tube 
simply supported tie pole arch bridge under actual projects is taken as the research 
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object. The specific calculation parameters are consistent with the general situation of 
3.1 experiment except the length of the suspender. Before the initial tensioning, the 
theoretical frequency under the target cable force is solved by the modified formula 
(11), and it is compared with the actual frequency. In this paper, the first-order natural 
vibration frequency analysis is adopted, and the specific analysis is shown in Table 2. 

Table 2. The frequency of the suspender under different tension 

number l/m T/kN 

Meas-
ured fre-
quency/

Hz 

(11) (6) (7) (10) 

f/Hz error f/Hz error f/Hz error f/Hz error 

DG1 6.716 1204.04 15.132 14.45 -4.51% 14.184 -6.26% 15.893 5.03% 16.861 11.43% 

DG3 12.302 1203.21 11.148 11.415 2.40% 7.546 -32.31% 8.244 -26.05% 8.317 -25.39% 

DG4 14.037 1206.53 8.974 9.005 0.35% 6.605 -26.40% 7.196 -19.81% 7.193 -19.84% 

DG6 15.4 722.93 6.639 6.667 0.42% 4.676 -29.57% 5.112 -23.00% 5.169 -22.15% 

DG4' 14.037 1201.26 8.959 8.985 0.29% 6.591 -26.43% 7.181 -19.84% 7.179 -19.87% 

DG3' 12.302 1197.23 11.141 11.387 2.21% 7.528 -32.43% 8.224 -26.18% 8.299 -25.51% 

DG1' 6.716 1217.13 15.153 14.482 -4.43% 14.256 -5.92% 15.968 5.38% 16.931 11.74% 

Based on the analysis of the table results, it can be observed that the maximum rela-
tive error of the modified calculation formula in this study for shorter cable lengths 
reaches 4.43%, while the minimum error is 0.29%. All errors are below 5%, indicating 
that the derived correction formula has a high level of accuracy for short cables. For 
short cables with one end hinged and one end fixed boundary conditions, the error is 
smaller compared to the boundary conditions of both ends fixed or both ends hinged. 
Equation (10) in reference [6] demonstrates high accuracy with a relative error below 
0.5% for calculating the natural frequencies of cables or rods longer than 91 meters, 
indicating its precision for long cables or rods. However, the consideration of the bend-
ing stiffness coefficient in the reference is suitable for slender cables and may result in 
larger errors in shorter structural elements such as suspension cables in arch bridges. 
Its values usually fall within the range of [0.02, 1][14]. Therefore, in this study, the errors 
are relatively large and not suitable for calculating the frequencies of short cables. 

5 Conclusions 

1). The frequency correction formula for the suspension rod's natural frequency can 
control the error within 5%, demonstrating a high level of accuracy. Compared to fre-
quency calculation formulas based on different boundary conditions, the formula based 
on fixed-fixed boundary conditions yields smaller errors than those based on fixed-
hinged boundary conditions. 

2). Calculating the natural frequencies of suspension rods with different lengths be-
fore tensioning at the target prestress value, combined with the use of a dynamic meas-
uring instrument, facilitates accurate control of the rod's tensioning force. As the most 
commonly used method for on-site tensioning of suspension rods involves measuring 
the rod's frequency using a dynamic measuring instrument, the frequency correction 
formula for the suspension rod's natural frequency has better practical applicability. 
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3). For suspension rods with lengths less than 7.699 meters, the flexural stiffness has 
a significant influence on the tensioning force and natural frequency. However, this 
influence diminishes as the length of the suspension rod increases.  
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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