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ABSTRACT. Anomalies and noise are prevalent in the time series data extracted 

from sensors at construction sites, which can hinder the assessment of safety lev-

els and risks. This study aims to detect anomalies and denoise real-time monitor-

ing data from sensors, thereby facilitating early risk warning and enhancing ac-

curacy of real-time status. To achieve this objective, we propose a framework 

that integrates Extended Isolation Forest, Whale Optimization Algorithm, and 

Variational Mode Decomposition models. The effectiveness of the framework is 

validated using a dataset obtained from sensors deployed during the construction 

of a deep pit foundation. The proposed approach successfully denoises the dataset 

without anomalies with a root mean square error of 0.0389 and signal-to-noise 

ratio of 24.09. Consequently, our approach effectively preprocesses data to ena-

ble improved decision-making and enhance security risk management capabili-

ties. 
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Technological advancements in sensing and data processing have facilitated the effi-
cient monitoring of engineering data throughout the construction process of deep pit 
foundations, enabling a more comprehensive analysis of geotechnical safety concerns. 
The extraction and transmission of data from the sensors is not flawless; anomalies and 
noise seriously affect the quality and completeness of the data, and random disturbances 
can exacerbate the problem [11] 

Anomalies can be detected using both supervised and unsupervised techniques. The 
Support Vector Machine[3] and Random Forest are two commonly used supervised 
algorithms that can detect anomalies with high performance (i.e. low false alarm rate). 
The datasets used to apply supervised techniques need to have high quality labelling in 
complicated engineering situations. However, the datasets are often incomplete and 
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require human labelling [12], which takes time. Unsupervised techniques, on the other 
hand, do not require labelling and have been promoted for use in detecting anomalies 
in sensor data. However, false positive rates are often significant and detection rates are 
consistently poor. The Wavelet Transform, Fourier Transform and Empirical Mode De-
composition (EMD) are common methods for processing signals, although each has 
drawbacks. Examples include the inability of the Fourier transform to handle non-sta-
tionary, non-linear signals that change frequency with time, and the modal aliasing that 
can occur with the components of EMD. 

Against this backdrop, this research endeavors to address the following inquiry: How 
can real-time monitoring data be effectively utilized to detect anomalies, eliminate 
noise, and evaluate geotechnical safety hazards? In order to respond to this question, 
we propose a hybrid intelligent data strategy that amalgamates EIF with enhanced Var-
iational Mode Decomposition (VMD) models. This approach aims at efficiently iden-
tifying anomalies and denoising monitoring data in order to enhance its quality for 
safety risk assessment. The unsupervised anomaly detection algorithm Extended Isola-
tion Forest (EIF) exhibits comparable performance to supervised algorithms. 

The EIF shares a similar underlying principle with the Isolation Forest (IF), but it 
overcomes the limitations associated with biased tree branching in IF[7]. EMD is 
widely employed for signal analysis, enabling the identification and decomposition of 
signals into their primary "modes" across various time-frequency applications. Huang 
et al [8] state that EMD can effectively handle nonlinear and non-stationary processes 
while remaining adaptable. In geotechnical monitoring, Variational Mode Decomposi-
tion (VMD) serves as a noise-robust, variational, non-recursive method for multi-reso-
lution decomposition. VMD outperforms EMD in terms of noise robustness when de-
composing vibration signals, and it also mitigates issues like modal aliasing and end-
point effects more effectively than EMD does. 

In this study, we put forward a comprehensive framework comprising of anomaly 
identification and data cleansing techniques to acquire an enhanced dataset that can 
enhance the capability for evaluating safety hazards. Anomalous data can provide in-
correct information for decision making and security risk assessment. Anomaly detec-
tion is important for risk alerts and for building high quality datasets. The data set with-
out anomalies can achieve better performance in the denoising process. The WOA-
VMD is useful to obtain the optimisation parameters, which can avoid the uncertainty 
arising from the selection of parameters according to manual experience. The feasibility 
and effectiveness of our proposed approach are presented with an engineering case. 

2 Detecting Anomalies 

In the existing literature, there are numerous methods that have been created and devel-
oped for anomaly detection [4]. The three types of existing sensor measurement meth-
ods are rule-based, supervised learning-based and unsupervised learning-based[8]. 

In particular, the application of the above methods to anomaly detection presents a 
number of difficulties. For example, rule-based techniques are unable to detect harmful 
events for which no rules have been established. In fact, rule-based systems can only 
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detect events where there are rules. In supervised learning, the training data must be 
labelled, otherwise the algorithms cannot be used [1]. However, unsupervised learning 
approaches can train on unlabelled data. 

Hariri et al [7] originally proposed the EIF model. Isolation Forest (iForest), a model-
free anomaly detection technique, is extended. The EIF creates an extended collection 
of Isolation Forest trees by extracting features from each monitoring dataset (e.g., steel 
shotcrete wave force and building settlement). An anomaly score is generated as each 
new piece of monitoring data is mapped to one of these IFrees. It is considered normal 
if its anomaly score falls below a predetermined threshold. If it does not, the monitoring 
data is considered abnormal. 

An anomaly score is generated as each new piece of monitoring data is mapped to 
one of these IFrees. It is considered normal if its anomaly score falls below a predeter-
mined threshold. If it does not, the monitoring data is considered abnormal. Conversely, 
anomalous data are outliers and can be separated after a small number of cycles of 
random partitioning. A binary tree can serve as a visual representation of the partition-
ing procedure employed during the isolation phase. The earlier a point undergoes par-
titioning, the higher its chances of being classified as an atypical point. Figure 1 depicts 
an illustration of this partitioning process, where the 'red' leaf node is more likely to be 
identified as an anomaly. 

 

Fig. 1. Example of the structure of an iTree 

The node of the isolation tree (T) can have two types of nodes: external nodes with-
out children or internal nodes with one test and two daughter nodes (Tl, Tr). The num-
ber of external nodes is denoted as n, the number of internal nodes is n−1, and the total 
number of nodes in an iTree is 2n−1 [9]. A test consists of an attribute q and a split 
value p. To create an iTree from a database X = {x1..., xn} containing n instances from 
a d-variate distribution, we recursively partition X by randomly choosing an attribute q 
and a partition value p, and we repeat this process until one of the following conditions 

Isolation tree

Root node

Internal node

Leaf node(Anomaly)

Leaf node(Background)
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is met:(1) the tree reaches a height limit, (2) |X| = 1 or all data in X have the same values 
[9].  

The length of path (h(x)) is determined by the number of edges that x traverses from 
the root node to an external node in an iTree. To estimate the average path length 
(E(h(x))) of iTree, we utilize analysis techniques borrowed from Binary Search Tree 
(BST). The instance x's anomaly score (s) is defined as: 

𝑠ሺ𝑥, 𝑛ሻ ൌ 2ି
ಶ൫೓ሺೣሻ൯

೎ሺ೙ሻ  (1) 

𝑐ሺ𝑛ሻ ൌ 2𝐻ሺ𝑛 െ 1ሻ െ ቀ
ଶሺ௡ିଵሻ

௡
ቁ (2) 

Specific details of the assessment process can be found in Liu et al [9]. 

3 De-noising Data 

Raw monitoring data will always contain noise due to the spatio-temporal ambiguity 
and complexity of working conditions in deep foundations. In this case, the noise hin-
ders accurate data processing and decision making. Traditional signal denoising tech-
niques include low-pass filtering, Wiener filtering [2], adaptive learning and Kalman 
filtering. Despite their effectiveness, these techniques have drawbacks as they eliminate 
or reduce valuable features. 

Multi-mode noise is often combined with monitoring data. A new approach for an-
alyzing signals is needed to decompose a signal with multiple components into distinct 
intrinsic mode functions that are limited to specific frequency bands (BLIMFs). The 
frequency domain signal segmentation and component separation are efficiently deter-
mined by the VMD. Furthermore, VMD has demonstrated the ability to effectively sep-
arate signals, enhance resistance against noise interference, and optimize computational 
efficiency. Consequently, we will employ VMD as a data denoising technique in this 
investigation, as elaborated upon in the subsequent section. 

3.1 Variational Mode Decomposition 

A non-recursive decomposition technique, called VMD, was proposed by Drago-
miretskiy and Zosso [5] and is used for adaptive and quasi-orthogonal signal decompo-
sition. A multicomponent seismic trace can be simultaneously decomposed into a lim-
ited number of band-limited intrinsic mode functions (IMFs). The traditional Wiener 
filter is generalised by the VMD into numerous adaptive bands. Wiener filtering is one 
of the most widely used techniques in signal processing, particularly for source separa-
tion and signal denoising. The short-time Fourier transform (STFT) is commonly used 
in the time-frequency domain when applied to audio [10]. Compared to EMD-based 
adaptive decomposition techniques, the VMD algorithm is more noise-resistant [5]. The 
following is an introduction to the theories and concepts surrounding VMD.  

Definition 1: (Intrinsic Mode Function) 
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Intrinsic Mode Functions are amplitude-modulated-frequency-modulated (AM-FM) 
signals, which is different from the definition of EMD. 

𝜇௞ሺ𝑡ሻ ൌ 𝐴௞ሺ𝑡ሻcos ሺ∅௞ሺ𝑡ሻሻ 

Where the phase 𝐴௞ሺ𝑡ሻ is envelope of 𝜇௞ሺ𝑡ሻ and ∅௞ሺ𝑡ሻ is a non-decreasing func-
tion. The equation of phase ∅௞ሺ𝑡ሻ and instantaneous frequency 𝜔௞ሺ𝑡ሻ is as follow: 

𝜔௞ሺ𝑡ሻ ൌ
𝑑∅௞ሺ𝑡ሻ

𝑑𝑡
൒ 0 

Definition 2: (Total Practical IMF Bandwidth) 
The total practical bandwidth of an IMF is estimated as Eq.(). Depending on the 

actual IMF, either of these terms may be dominant. 

𝐵𝑊஺ெିிெ ൌ 2ሺΔ𝑓 ൅ 𝑓ிெ ൅ 𝑓஺ெሻ 

It is necessary to consider the decomposition layers k and the penalty factor in order to 
impose constraints on the VMD that will affect the performance of the algorithm. The 
centre frequency method is currently popular. Without a reliable basis, this method pri-
marily calculates the value of k by observing the centre frequency at different values of 
k. It can only calculate the number of modes, k, but not the penalty parameter, which 
ultimately results in suboptimal noise reduction. To achieve a better noise reduction 
result, the whale optimisation technique is used to adaptively determine the two param-
eters mentioned above. 

3.2 Whale Optimization Algorithm 

For the optimisation of numerical problems, Mirjalili and Lewis developed the Whale 
Optimisation Algorithm (WOA). The WOA is a swarm intelligence algorithm for con-
tinuous optimization problems in meta-heuristic optimization. It is becoming increas-
ingly popular in engineering applications because: (1) it is based on simple ideas and is 
easy to use; (2) it does not require gradient information; (3) it can avoid local optima; 
and (4) it can be applied to a wide variety of problems across different disciplines. The 
WOA has been shown to be equal to or better than some of the currently used compu-
tational approaches. Here is the mathematical model: (1) Prey encirclement: Whales 
are able to locate and encircle prey at any time. Here we assume that the target prey, or 
a location close to it, is the current best position of the search agent. The other whales 
(search agents) try to adjust their positions so that they are facing the most effective 
search agent. The model looks like this: 

 𝐷ሬሬ⃗ ൌ หC. 𝑋∗ሬሬሬሬ⃗ ሺ𝑡ሻ െ 𝑋⃗ሺ𝑡ሻห (3) 

 𝑋⃗ሺt ൅ 1ሻ ൌ 𝑋∗ሬሬሬሬ⃗ ሺ𝑡ሻ െ 𝐴 ∙ 𝐷ሬሬ⃗  (4) 

where t indicates the current iteration, 𝑋∗ is the position vector of the current best so-
lution obtained through iteration t, 𝑋⃗ is the position vector of each agent, | | is the 
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absolute value, and “.” is an element-by-element multiplication. The coefficient vectors 
𝐴 and 𝐶 are calculated as follows: 

 𝐴 ൌ 2𝑎⃗ ∙ 𝑟 െ 𝑎⃗ (5) 

 𝐶 ൌ 2 ∙ 𝑟 (6) 

where 𝑎⃗ linearly decreases from 2 to 0 over the course of the iteration and r is a ran-
dom number[0,1]. 

4 Case Study 

We illustrate and validate our hybrid smart data methodology with an exemplary case 
study. The site is a major foundation hole for a metro line being built in Wuhan, China, 
which is shown in Figure 2. The project was chosen because the researchers were work-
ing closely with contractors on a number of other studies, and sensors were being used 
to monitor geotechnical safety issues. 

4.1 Case Description 

The T-shaped transfer between stations A and B is the chosen metro project. A station 
with a 13 metre island platform and three levels of double piers is located underground. 
Shield tunnel reception shafts are located at both ends of the station, which has a total 
length of 239.2 metres, a total width of 22.5 metres for the standard section, and a height 
of 22.63 metres to 25.08 metres. With two underground levels and two columns, Sub-
way Station B is an island-style station with a length of 14 metres. The total length of 
the station is 634.105 metres, while the total width of the standard section is 23.1 me-
tres. The ground elevation of the study area is between 26.0 and 30.7 metres, and the 
landform is a denudation accumulation ridge area (Grade III terrace). 

 

Fig. 2. Example of deep pit foundation 
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Examples of sensors installed in the case are presented in Figure 3. After the sensors 
are installed, the data are transmitted and stored in the web-based monitoring system, 
as shown in Figure 3.  

 
Fig. 3. Web-based monitoring data system 

4.2 Anomaly Monitoring Data Detection 

The data source and monitoring points consist of four installed sensors, with one serv-
ing as a reference point and the other three (CJ1, CJ2, CJ3) serving as analysis points. 
Figure 4a indicates that there are no apparent anomalies in the billing data. Anomalies 
are identified through one-dimensional (CJ1), two-dimensional (CJ1 and CJ2), and 
three-dimensional (CJI, CJ2, and CJ3) analyses. During anomaly detection, each point 
is assigned an anomaly value based on various training set sizes. The highest anomaly 
value from each training set is used to determine sensitivity to anomalies. Figure 4b 
displays the outcomes of dimensional analysis and anomaly detection using different 
training sets. 

We classify data points with anomaly scores exceeding 0.6 as outliers and analyze 
the anomaly scores of these outliers. Figure 4b illustrates that one-dimensional data 
exhibits higher anomaly scores compared to two-dimensional and three-dimensional 
data. The anomaly scores for one-dimensional data vary with changes in the size of the 
training set, but they consistently exceed 0.78. Conversely, the anomaly scores for two-
dimensional and three-dimensional data remain below 0.74. The highest value observed 
for the anomaly score of two-dimensional data ranges from 0.71 to 0.74, while for three-
dimensional data it falls between 0.69 and 0.71. The outlier anomaly scores in high-
dimensional datasets are more concentrated and tend to be lower overall. 

Again, four monitoring locations (ZCL-02-21, ZCL-02-22, ZCL-04-C6, ZCL-04-
C7) are selected to analyse the axial forces on the steel columns. Figure 4a of our results 
demonstrates our ability to conclude that the monitoring data from ZCL-04-C6 is anom-
alous. The results of our analysis of the detection of anomalous data in different dimen-
sional settings are shown in Figure 4b. As shown in Figure 5, the higher the dimension-
ality of the monitoring data, the less sensitive iForest is to detecting anomalies. By 
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examining high dimensional monitoring data, we can distinguish between single and 
multi-dimensional anomalies. The higher the dimension of the monitoring data, the 
higher the value of the anomaly and the easier it is to identify the origin of the anomaly. 
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(b) Settlement data: different dimensional and sizes of training set 

Fig. 4. Examples of monitoring and settlement data 
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(b) Steel support axial force: different dimensional and training set sizes 

Fig. 5. Examples of monitoring steel support axial force data 

4.3 Monitoring Data De-noising 

For the purpose of denoising the sample data, we use a dataset with 1000 monitoring 
points, depending on the duration and frequency of data collection [6]. According to 
some studies, multiple "modes" in the original signal may coexist in the same IMF 
component, or some "modes" may not be properly detected, leading to under-decom-
position or leakage decomposition when the number of decomposition modes (K) is too 
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small. A particular 'mode' in the signal can be 'pulled' into many IMF components if K 
is too large, leading to over-decomposition. The settings are optimised using the WOA 
to avoid information loss or unacceptable decomposition effects. The WOA-VMD pop-
ulation size is set to 10, the maximum number of iterations is set to 30, the range of 
iterations for K is set to 4-6, and the range for is set to 20-1000. The results are shown 
in Figure 6. The results of correlation coefficient and the envelope entropy are summarized 
in Table 1. 

 
Fig. 6. WOA-VMD results of sample data 

Table 1. Results of the optimization of VMD parameters by the WOA. 

K α 
Envelope En-

tropy 

Correlation Coefficient 

IMF1 IMF2 IMF3 IMF4 

4 95 6.7963 0.981 0.181 0.115 0.090 

The root mean square error (RMSE) and signal-to-noise ratio (SNR) are utilized to 
calculate the reconstructed signal and original data signal. Figure 7 presents the calcu-
lation of these two indicators with different K-values for result validation. The defini-
tions of RMSE and SNR can be found in Eq. (7) and Eq. (8). 

𝑅𝑀𝑆𝐸 ൌ ටଵ

௡
∑ ሺ𝑓଴ሺ𝑛ሻ െ 𝑓ଵሺ𝑛ሻሻଶ

௡  (7) 

𝑆𝑁𝑅 ൌ 10 ൈ logଵ଴ሺ
భ
೙

∑ ௙బ
మሺ௡ሻ೙

భ
೙

∑ ሺ௙బሺ௡ሻି௙భሺ௡ሻሻమ
೙

ሻ (8) 

Where, 𝑓଴ is the original signal data, 𝑓ଵ is the reconstructed signal data. 
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Fig. 7. Two indicators under different K values 

5 Conclusion 

To enhance the accuracy of monitoring data collected from sensors in construction, it 
is crucial to conduct anomaly detection and noise elimination. Our research focuses on 
devising an innovative intelligent data methodology that can effectively identify anom-
alies and eliminate noise in monitoring data, with a specific emphasis on assessing ge-
otechnical safety threats. The proposed framework encompasses: 

To detect abnormal points, the Extended Isolation Forest method gathers character-
istics from each monitoring dataset. By applying Variational Mode Decomposition, 
harmonic noise is eliminated to enhance data quality. We illustrate the practicality and 
effectiveness of our proposed approach using the case study of the Wuhan metro pro-
ject. The outcomes indicate that by utilizing EIF and enhanced VMD, we can achieve 
a remarkable level of accuracy in anomaly detection and data denoising. Our findings 
reveal that our innovative technique exhibits an RMSE value of 0.0389 and an SNR 
value of 24.09 for identifying anomalies. The capability of EIF and VMD to accurately 
identify anomalies and improve surveillance data has been successfully demonstrated. 

Although our method could not detect all anomalies, it can help site management to 
better understand the hazards associated with geotechnical safety. Furthermore, we 
claim that our method can improve the quality of data collected from sensors in deep 
foundation pits with few errors. As a result, the noise in the monitoring data obtained 
from sensors can be effectively reduced using the unique smart data approach we have 
developed. 
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