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Abstract. The incompressible, viscous and steady fluid is studied basing the 

energy dissipation equation, motion equations, continuity equation and bounda-

ry conditions. It is proved that the necessary and sufficient condition of the en-

ergy rate obtaining the extreme value is the vorticity field meeting the harmonic 

equations. The vorticity field meeting the harmonic equations is equivalent to 

the viscous items with potential. The relationship between the energy rate and 

the motion equations has also been studied. For the real motion, the necessary 

and sufficient condition of the energy rate obtaining the extreme value is equiv-

alent to the inertia items with potential. Finally, an example about the theory is 

given. 
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1 Introduction 

Helmholtz in 1868 proposed the “theory of minimum rate of energy dissipation” for 

the slow viscous flow. The basic point is that in the gravity field, for incompressible, 

viscous fluid, if the inertia items of the motion equations can be ignored, the rate of 

energy dissipation by the real velocity distribution is less than any others (virtual) in 

this volume with the same velocity distribution in the volume’s surface[1]. 

Some scholars had studied the theory of the minimum dissipation rate after Helm-

holtz. In 1970s, Chinese-American scholar Yang C.T. and Chang H.H. had got great 

progress in the theory[2~9], and their findings have some certain influence in later re-

search. Current research in the theory with influence mainly are the literatures[10~13]. 

Some others[14~19] are mainly focused on the application of the theory of the minimum 

dissipation rate. 

Helmholtz conclusion about the “theory of minimum rate of energy dissipation” 

gives a sufficient condition of fluid movements, but if the inertia items in the fluid 

motion equations are not zero, the “minimum rate of energy dissipation” is still a 

controversial issue. In literature[10], the necessary and sufficient condition of the min-

imum rate of energy dissipation for planar, incompressible, steady and viscous fluid is 

proposed by introducing the stream function, but this conclusion can not be extended 

to the three-dimensional flow, because the stream function may not exist. 
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For three-dimensional flow, “the theory of minimum rate of energy dissipation” is 

still an unresolved issue. In this paper, the necessary and sufficient condition of the 

“theory of minimum rate of energy dissipation” for incompressible, steady and vis-

cous fluid in three-dimensions is proposed and proved. As well, the relationship be-

tween the “theory of minimum rate of energy dissipation” and the motion equations 

will be analyzed. 

2 Definitions 

For narrative convenience, some definitions are given below. 

If a group of velocity distribution meets the continuity equation in a closed region 

and meets the velocity boundary conditions on the closed region’s border, this group 

of velocity distribution is called the possible velocity distribution. 

If a group of velocity distribution meets the continuity equation and motion equa-

tions in the closed region and meets the velocity boundary conditions on the closed 

region’s border, this group of velocity distribution is called the real velocity distribu-

tion. 

The real velocity distribution must be the possible velocity distribution, while the 

possible velocity distribution maybe not the real velocity distribution, because it does 

not always satisfy the motion equations. 

For a possible velocity distribution x y zu i u j u k+ + , if a function U exists, and it 

makes the inertia items of the possible velocity distribution meet the follow equations 
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the inertia items are called the potential inertia items. Similarly, if a function V ex-

ists, and makes the viscous items of the possible velocity distribution meet the follow 

equations 

 
x

V
u

x





＝  (4) 

 
y

V
u

y





＝  (5) 

 
z

V
u

z





＝  (6) 

220             H. Wu and Z. Zhang



the viscous items are called the potential viscous items. In equation(4), equation (5) 

and equation (6), 2 2 2x y z

  
 + +

  
＝ . 

3 Theory Of Minimum Rate of Energy Dissipation 

For incompressible, steady and viscous fluid, the theory of minimum rate of energy 

dissipation can be described as follow: in all the possible velocity distributions, the 

necessary and sufficient condition of the minimum rate of energy dissipation is that 

the viscous items are the potential items. 

According to the total differential theorem, it is not difficult to prove that the vis-

cous items with potential function are equivalent to a vorticity field satisfying the 

harmonic equations, therefore, the theory of minimum rate of energy dissipation can 

be expressed as follow: in all the possible velocity distributions, the necessary and 

sufficient condition of the minimum rate of energy dissipation is the vorticity field of 

the velocity distribution satisfying the harmonic equations.  

4 Sufficiency 

Sufficiency: in all the possible velocity distributions, if the viscous items of the veloc-

ity distribution are the potential items, the rate of energy dissipation is the minimum. 

Proof: it is supposed that x y zu i u j u k+ +  is a possible velocity distribution with 

the potential viscous items, and ( ) ( ) ( )x x y x z xu i u j u k  + + + + +  is another pos-

sible velocity distribution. 

These two possible velocity distributions should satisfy the continuity equation as 

follow in the closed region D 
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According to equation (7) and equation(8), thus 

 0=



+




+





zyx

zyx   (9) 

The possible velocity distributions should satisfy the velocity boundary conditions 

as follow on the closed region D’s border D  

 ),,( zyxfu Dx =
, ),,( zyxgu Dy =

, ),,( zyxhu Dz =
 (10) 
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 ( , , )x x Du f x y z + = , ( , , )y y Du g x y z + = , ( , , )z z Du h x y z + =  (11) 

According to equation (10) and equation(11), thus 

 | 0x D  = , 0| =Dy , 0| =Dz  (12) 

According to the expression of the rate of energy dissipation, thus 
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According to equation(13), equation (14) and equation(15), thus 
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According to Green's first formula and the equation(12), thus 
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Similarly, 
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According to Green's first formula, equation(7) and equation(12), thus  
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Similarly, 
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According to equation(20), equation(21), equation(22) and equation(23), thus 
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According to equation(4), equation(5) and equation(6), equation(24) can be written 
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According to Green's first formula and the equation(12), thus 
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According to equation(9), equation(25), equation(26), equation(27) and equa-

tion(28), thus 
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According to equation(16) and equation(29), thus 

 ( ) ( ) ( ) 0Φ u Φ u Φ + − − =  (30) 

For any u  and , Φ  is not negative, thus 

 ( ) ( ) ( ) 0Φ u Φ u Φ + − =   (31) 

Equation(31) shows that in all the possible velocity distributions, if the viscous 

items of the velocity distribution are the potential items, the rate of energy dissipation 

is the minimum. Proven. 

5 Necessity 

Necessity: in all the possible velocity distributions, if the rate of energy dissipation is 

the minimum, the viscous items of the velocity distribution are the potential items. 

Proof of the necessity involves a variational problem with differential constraint. 

Functional as follow 
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Euler equations as follow 

 
' 0( 1,2, , )

j jy y

d
H H j n

dx
− = =   (36) 

In equation(35), 
1

( )
m

i i

i

H F x 
=

= + . 

Theorem 1 and its proof see literature[20], page from 181-188. 

According to theorem 1, if under differential constraints 

 0=



+




+





z

u

y

u

x

u zyx  (37) 

and boundary conditions 

 ),,( zyxfu Dx =
, ),,( zyxgu Dy =

, ),,( zyxhu Dz =
 (38) 

the cost functional 

 
22 2

( ) 2
yx z

D

uu u
Φ u

x y z


      
= + +     

       


 

 
dxdydz

z

u

x

u

y

u

z

u

x

u

y

u xzzyyx


























+




+

















+




+

















+




+

222

 (39) 

obtains the extreme value, a selected function ( , , )x y z  exists, and makes func-

tions ( , , )xu x y z , ( , , )yu x y z  and ( , , )zu x y z  satisfy the Euler equations 

 
22 2 2 2

2 2 2
4 2( ) 2( ) [ ( , , )] 0

yx x x z
uu u u u

x y z
x y x y z x z x


    

+ + + + + =
       

 (40) 

 
2 2 22 2

2 2 2
4 2( ) 2( ) [ ( , , )] 0

y y yx z
u u uu u

x y z
y x y x z y z y


    

+ + + + + =
       

 (41) 

 
2 22 2 2

2 2 2
4 2( ) 2( ) [ ( , , )] 0

y xz z z
u uu u u

x y z
z y z y x x z z


    

+ + + + + =
       

 (42) 

Equation(40), equation (41) and equation (42) can be written as 

 1
( ) 0

2

yx z
x

uu u
u

x x y z x

  
 + + + + =

    

 (43) 

 1
( ) 0

2

yx z
y

uu u
u

y x y z y

  
 + + + + =

    

 (44) 
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 1
( ) 0

2

yx z
z

uu u
u

z x y z z

  
 + + + + =

    

 (45) 

According to equation(37), equation(43), equation (44) and equation(45), thus 

 1
0

2
xu

x


 + =


 (46) 

 1
0

2
yu

y


 + =


 (47) 

 
1

0
2

zu
z


 + =


 (48) 

The equation (46) partial derivative of y subtracts the equation (47) partial deriva-

tive of x, thus 

 
( ) ( )

0
y x

u u

x y

   
− =

 
 (49) 

Similarly, 

 
( )( )

0
yz

uu

y z

  
− =

 
 (50) 

 
( ) ( )

0x z
u u

z x

   
− =

 
 (51) 

According to equation (49), equation (50), equation (51) and total differential theo-

rem, xu , yu and zu  must be the total differential of a function, namely, the vis-

cous items of the velocity distribution are the potential viscous items. Proven. 

6 Relationship Between Theory Of Minimum Rate Of Energy 

Dissipation And Motion Equations 

As can be seen from the above results, the theory of minimum rate of energy dissipa-

tion is equivalent to the viscous items with potential or vorticity field satisfying the 

harmonic equations. There is no inevitable relationship between theory of minimum 

rate of energy dissipation and the motion equations. 

It is not difficult to prove that if the possible velocity distribution meets the motion 

equations under a gravity field, the inertia items with potential are equivalent to the 

viscous items with potential. Therefore, the follow inference is available: in all the 

possible velocity distributions, the necessary and sufficient condition of the minimum 

rate of energy dissipation of the real velocity distribution is that the inertia items of 

the velocity distribution are the potential inertia items. This inference can be consid-
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ered as the promotion of the Helmholtz conclusion about the theory of minimum rate 

of energy dissipation. 

According to the inference, if the rate of energy dissipation of the real velocity dis-

tribution is the minimum, the inertia items of the velocity distribution are the potential 

items. Therefore, the motion equations can be written as 

 0
p

U G V
x



 

 
− + − = 

  

 (52) 

 0
p

U G V
y



 

 
− + − = 

  

 (53) 

 0
p

U G V
z



 

 
− + − = 

  

 (54) 

In equation(52), equation (53) and equation(54), U stands for the inertia items po-

tential, G for the gravity items potential, p for the pressure potential, V for the viscous 

items potential. According to equation(52), equation (53) and equation(54), thus 

 p
U G V const



 
− + − =  (55) 

7 Examples For Theory of Minimum Dissipation Rate 

7.1 Steady, Incompressible and Axisymmetric Planar Flow 

Consider the steady, incompressible and axisymmetric planar flow described by the 

following equations 

 

( )

r

K
V

r

V f r


=


 =

 (56) 

It can be confirmed that the equation (56) satisfy the following continuity equa-

tions 

 
( )1 1

0r
VrV

r r r






+ =

 
 (57) 

The motion equations for steady, incompressible, viscous fluid in polar coordinates 

as follow 
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2
2

2

2

2

1r r
r r r

r
r

VV Vp
V f V

r r r r

V V V V
V V

r r r



  







    
− = − + +  −  

   


   + =  −    

 (58) 

The following equations can be got by substitution of the equations (56) into the 

second formula of the equations (58) 

 
2

2

2
0

V VK v K v
r r V

r v r v

 


 − +
− − =

 
 (59) 

Equation (59) is the second order homogeneous Euler equation, taking the bounda-

ry conditions 

 
1 2 1 21 2

1 2

, , ,r r r r r r r r r r

K K
V V V V V V

r r
 = = = == = = =  (60) 

with 012  rr . The solution is as follows 

(1) While 2−=
v

K
 

 

1 1 2 2 2 1 2 2 1 1
1 2

2 2

1 1

ln ln1 ln 1 ln

ln ln

r

K
V

r

rV r rV r rV rVr r
V C C

r rr r r r

r r




=


− −

= + = +




 (61) 

(2) While 2−
v

K
 

 
2 2

1 1
1 1 2 2 2 1 2 2 1 1

3 4
2 2 2 2

2 1 2 1

1 1

r

K K
K Kv
v

K K K K

K
V

r

rV r rV r rV rV
V C C r r

r r
r r r r






   

   
+ +         + +   

   

       
+ + + +       

       


=




− − = + = +


− −

 (62) 

The limit type of the equation (62) is
0

0
 while 2−=

v

K
. According to L'Hospital 

rules, it is can be got that the limit of equation (62) is the equation (61) while

2−→


K
. 
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7.2 Energy Rate Of Plane Axisymmetric Flow 

While
2−=

v

K

, the strains of equation (61) are as follow 

 
2

r
rr

V K
A

r r


= = −


 (63) 

 
2

1 r
V V K

A
r r r







= + =


 (64) 

 1 2 2

2

2 2 ln1
2 r

r

VV C C C r
A r

r r r r






 − + −  
= + = 

   
 (65) 

The energy rate of equation (61) is as follow 

 

( )

( )

( )
( )

2

1

2
2 2 2

1
0

2

2 2 1 12 2 2

1 222 2 2 2

1 2 1 22 1

2 2

1 1 1 1
4

4 ln ln

r

rr r
r

Φ A A A rdrd

rV rV
K V V

r r r rr r



  



= + +

 −   
= − + − + −    

−     

 
 (66) 

Similarly, 

(1) While 1−=


K
, the energy rate of equation (62) is as follow 

 
( )

( )
( )

2

2 2 1 12 2 22
2 1 222 2

1 2 12 1

1 1
4 ln

2

rV rV r
Φ K V V

r r rr r


 − 
= − + + −  

−   

 (67) 

(2) While 2−


K
 and 1−



K
, the energy rate of equation (62) is as follow 

 

( ) ( )

2

3 2 2

1 2

2

2 1 2 1

2 2 22 1
2 2 1 1 1 2

( 2) ( 2)

2 1

1 1
4

2

4 1

K K

K K

Φ K
r r

K

r r
rV rV V V

K
r r

 

 







   
+ +   

   

+ +

  
= −  

 

 
+   −

+ − + − 
    +−       

 (68) 

According to L'Hospital rules, it is can be got that the limit of equation (68) is the 

equation (66) while 2−→


K
, and the limit of equation (68) is the equation (67) while

1−→


K
. 
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7.3 The Possible Velocity Distribution With The Minimal Energy Rate 

Consider the steady, incompressible and axisymmetric planar flow described by the 

following equations 

 

( )

r

K
V

r

V h r


=


 =

 (69) 

It can be confirmed that the equation (69) satisfy the continuity equation (57) in the 

closed region. If it is assumed that the equation (69) satisfy the boundary condi-

tions(60), the equation (69) are the possible velocity distribution, and its energy rate is 

as follow 

 2

1

2

2

2 2

1 2

1 1 1
4 '

2

r

r

h
Φ K h rdr

r r r


    
= − + −    

    
  (70) 

According to the variational theory[3], if the equation (70) get the extreme value, 

h(r) meets the following equation 

 
2 '' ' 0r h rh h+ − =  (71) 

The equation (71) is second order homogeneous Euler equation. According to the 

boundary conditions(60), the possible velocity distribution with the extreme energy 

rate can be got as follow 

 
2 2

5 1 1 2 2 2 1 2 2 1 1
6 2 2 2 2

2 1 2 1

1

r

K
V

r

C rV r rV r rV rV
V C r r

r r r r r r



=




− − = + = +
 − −

 (72) 

The energy rate of the equation (72) is as follow 

 
( )

2

2 1 1 22

4 2 2 2 2

1 2 2 1

1 1
4

rV rV
Φ K

r r r r


 − 
= − +  

−   

 (73) 

In fact, the energy rate of the equation (72) is the minimal in all the possible ve-

locity distribution. It is proved with the reduction to absurdity as follow. 

It is assumed that the following velocity distribution is a possible velocity distribu-

tion with 0)( r , and its energy rate is less than the equation(72). 
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2 2

5 1 1 2 2 2 1 2 2 1 1
6 2 2 2 2

2 1 2 1

1
( ) ( )

r

K
V

r

C rV r rV r rV rV
V C r r r r

r r r r r r
  

=

− −
= + + = + +

− −

 (74) 

It can be confirmed that the equation (74) satisfy the continuity equation (57) in the 

closed region. The equation (74) is a possible velocity distribution, so it satisfies the 

boundary conditions(60). Thus 

 
1 2

( ) | 0, ( ) | 0r r r rr r = == =  (75) 

The energy rate of the equation(74) is as follow 

 ( ) 2

1

22 3

2 1 1 22 2
2 2 2 2

1 2 2 1

1 1
4 2

r

r

rV rV
Φ K r dr

r r r r r r


 

 −      
= − + +     

−        


 (76) 

Contrasting the equation(76) and the equation(73), and taking into account the 

boundary conditions of the equation(75), if 0)( r , the energy rate of the equa-

tion(76) is larger than the equation (73). It is a contradiction. Therefore, in all the 

virtual, planar, axisymmetric flow, the energy of the equation (72) is the minimum. 

7.4 Confirmation Of The Necessary And Sufficient Condition (The Vorticity 

Field Meets The Harmonic Equation) 

The vorticity field in cylindrical coordinates is as follow 

 ( )1 1
rot z r z r

r z

rVVV V V V
V i i i

r z z r r r




 

       
 = − + − + −             

＝  (77) 

The vorticity field of the axisymmetric, planar flow is as follow 

 ( )1
rot z

rV
V i

r r


 =


＝  (78) 

The harmonic equation in cylindrical coordinates is as follow 

 1 1
u

u u u
r r

r r r r z z 

            
 + +                 

＝  (79) 

The harmonic equation of the axisymmetric, planar flow is as follow 

 
1

u
u

r
r r r

  
  

  
＝  (80) 

The harmonic equation of the axisymmetric, planar flow’s vorticity field is as fol-

low 
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 ( )
( )1 1

u rot z

rV
V r i

r r r r r


   

         

＝ ＝  (81) 

Two cases are confirmed according to the different velocity field expressions of the 

equation (61) and the equation(62). 

(1) While 2−=
v

K
 

The vorticity field of the equation(61) is as follow 

 

( )
( )

( )

1 2

2

-2 -2

2
2 2 4

+ ln1 1
u rot

ln1 1

41 1
-2

z

z

z z z

C C r
V r i

r r r r r

r
C r i

r r r r r

Cr r
C r i C i i

r r r r r r

   
         

   
       

   
 

   

＝ ＝

＝

＝ ＝ ＝

 (82) 

Confirm 1: While 2 0C = , then 0= , the energy rate of the equation (61) is the 

minimal. 

According to the equation(61), while 2 0C = , then 01122 =− VrVr , the velocity 

field of the equation (61) is the same as the velocity field of the equation(72) as fol-

low 

 

1 1

r

K
V

r

rV
V

r



=


 =


 (83) 

So, the energy rate of the equation (61) is the same as the equation(72). It is proved 

that the energy rate of the equation (72) is the minimal in all the possible velocity 

distribution, so the energy rate of the equation (61) is the minimal. 

Confirm 2: While 02 C , then 0 , the energy rate of the equation (61) is 

not the minimal. 

According to the equation(61), while 02 C , then 01122 − VrVr , the velocity 

field of the equation (61) is not the same as the velocity field of the equation(72). So, 

the energy rate of the equation (61) is not the same as the equation(72). It is proved 

that the energy rate of the equation (72) is the minimal in all the possible velocity 

distribution, so the energy rate of the equation (61) is not the minimal. 

(2) While 2−
v

K
 

The vorticity field of the equation(62) is as follow 
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  

 
+ 

 

 
+ 

 

 
− 

 

   
    

          
    

  
  

  
    
      

  

 
      + +           
 

＝ ＝

＝

＝ ＝ zi
 
 
  

 (84) 

Confirm 3: While 4 0C = or 0K = , then 0= , the energy rate of the equation 

(62) is the minimal. 

Slimily with the confirm 1. 

Confirm 4: While 04 C or 0K , then 0 , the energy rate of the equation 

(62) is not the minimal. 

Slimily with the confirm 2. 

In fact, it can also be confirmed by contrasting the energy rate expressions, the 

equation(66), the equation(67), the equation(68) and the equation(73), directly. The 

value of the equation(66), the equation(67) and the equation(68) is equivalent to the 

value of the equation(73) in case 0= , and the value of the equation(66), the equa-

tion(67) and the equation(68) is larger than the value of the equation(73) in case

0 . But the contrasting process is quit tedious, it is no longer listed. 

In all above the cases, it is confirmed that the necessary and sufficient condition of 

the energy rate obtaining the extreme value is the vorticity field meeting the harmonic 

equations.  
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