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Abstract. A numerical solution for solving plastic stress field based on the low-

er bound theorem is proposed in this paper. The method uses the node equilib-

rium equations rather than the element equilibrium equations. The equilibrium 

differential equations over the area of element around the node are transformed 

into the equilibrium integral equations along the boundary by Green’s theorem. 

A linear programming model is developed with the variables of nodes stresses, 

linearized objective functions, equilibrium equations, stress boundary condi-

tions and yield criteria constraints. The lower bound limit load and plastic stress 

field can be computed from the model. The further analysis shows that it is nec-

essary only for the element equilibrium equations to introduce the node unique 

to a particular element, which will cause the model suitable only for the lower 

bound limit load, not for the plastic stress field. For the node equilibrium equa-

tions, it is not necessary to introduce the node unique to a particular element. 

The model with the node equilibrium equations is suitable for both the lower 

bound limit load and the plastic stress field. One example for the lower bound 

limit load and the plastic stress field illustrates the capability of the numerical 

solution proposed in this paper. 

Keywords: Lower bound theorem; Numerical solution; Node equilibrium equa-

tions; Limit load; Plastic stress field; Degree of relative freedom 

1 Introduction 

Drucker and Prager[1] proposed the lower bound theorem of classical plasticity theory 

in 1951. The lower bound theorem assumes a perfectly rigid-plastic model and states 

that any statically admissible stress field will furnish a lower bound estimate of the 

true limit load. Lysmer[2] proposed a linear programming model for solving stability 

problems using the lower bound theorem based on the idea of the finite element 

method and the linearization of Mohr-Coulomb yield criterion in 1970. Wai-fah 

Chen[3] elaborated the application of limit analysis method in geotechnical problems 

in his monograph Limit Analysis and Soil Plasticity published in 1975. Sloan[4] solved 

the foundation bearing capacity problem based on the active set algorithm in 1988, 

and gived the solution of the stability problem. 

As a particularly useful tool for the analysis of stability, lower bound theorem has 

attracted the interest from many researchers in view of its simplicity and more 
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importantly by-passing the cumbersome time-history elastoplastic analyses, whilst 

still providing the failure mechanisms of the structures involved[5, 6, 7, 8].  

Based on the numerical solution presented by Lysmer and Sloan, lower bound 

theorem has been extensively used in a wide variety of problems, such as tunnels[9, 10, 

11], slopes[12, 13, 14], foundations[15, 16, 17], anchors[18, 19] and braced excavations[20, 21]. Li’s 

research proposed to use the 4-noded triangular elements instead of 3-noded 

triangular elements for meshing while the assumption of the node unique to particular 

element is remained[22].  

The present research about the lower bound theorem is basically focused on 

solving the stability problems of geotechnical engineering based on the lower bound 

theorem, including the stability of slope or underground cavern, the bearing capacity 

of foundation and the earth pressure of retaining structure. Very few resaerch involves 

the plastic stress field. The plastic stress field under the action of limit load is 

necessary and important for the reinforcement measures in engineering, espicailly 

under the case that the stability of geotechnical engineering cannot meet the 

requirements. 

This paper presents a numerical method named limit element method (LEM for 

short) for solving plastic stress field based on the lower bound theorem. LEM uses the 

node equilibrium equations rather than the element equilibrium equations. The 

equilibrium differential equations over the area of element around the node are 

transformed into the equilibrium integral equations along the boundary by Green’s 

theorem. A linear programming model is developed with the variables of nodes 

stresses, linearized objective functions, equilibrium equations, stress boundary 

conditions and yield criteria constraints. The lower bound limit load and plastic stress 

field can be computed from the model. The further analysis shows that it is necessary 

only for the element equilibrium equations to introduce the node unique to a particular 

element, which will cause the model suitable only for the lower bound limit load, not 

for the plastic stress field. For the node equilibrium equations, it is not necessary to 

introduce the node unique to a particular element. The linear programming model 

with the node equilibrium equations is suitable for both the lower bound limit load 

and the plastic stress field. One example for the lower bound limit load and the plastic 

stress field illustrates the capability of LEM. 

2 Lower bound theorem and mathematical model 

2.1 Lower bound theorem 

The lower bound theorem of classical plasticity theory assumes a perfectly plastic soil 

model and states that any statically admissible stress field will furnish a lower bound 

estimate of the true limit load. A statically admissible stress field is one which 

satisfies (a) the stress boundary conditions, (b) equilibrium, and (c) the yield 

condition.  
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2.2 Mathematical model 

For the body of volume V with surface S, the mathematical model of the lower bound 

theorem can be written as follow 

 max Q(σ) (1) 

st.      E(σ) = bV 

B(σ) = bS 

F(σ) ≤ 0 

where 

σ - stress in V; 
Q(σ) - objective function; 

E(σ) = bV, equilibrium differential equation; 

B(σ) = bS, stress boundary conditions; 

F(σ) ≤ 0, yield criterion. 

The mathematical model of the lower bound theorem Eq. (1) (LBM for short) is an 

optimization model. 

3 Plastic stress field 

3.1 Optimization model 

The feasible solution is one which satisfies all the constraints of the optimization 

model. The maximum value of the objective function of the optimization model is 

referred to as the maximum value. The optimal solution is one which maximizes the 

objective function. For an optimization model, the feasible solution may exist or not. 

If the feasible solution does not exist, the optimal solution does not exist; If the 

feasible solution exists, the maximum value may exist (finite) or not (infinite). If the 

maximum value exists, the optimal solutions exist, and the quantity of the optimal 

solutions may be finite or infinite. 

3.2 Plastic stress field 

The feasible solution of LBM corresponds to the statically admissible stress field of 

the lower bound theorem. The maximum value of LBM corresponds to the lower 

bound limit load of the lower bound theorem. The optimal solution of LBM 

corresponds to the lower bound limit stress field of the lower bound theorem. The 

lower bound limit stress field is one which satisfies all the constraints of LBM under 

the condition of the lower bound limit load.  

Plastic point of the lower bound theorem is one which is in yield state in any lower 

bound limit stress field. Otherwise it is a non-plastic point. The area composed of all 

plastic points only is called plastic zone. 

The physical meaning of the plastic point is one which has to be in yield state 

under the action of the lower bound limit load. The physical meaning of plastic zone 

is one which has to be in yield state under the action of lower bound limit load. 
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Due to the convexity of the yield criterion, the lower bound limit stress field in the 

plastic zone is unique, while the lower bound limit stress field in the non-plastic zone 

is not unique. The plastic stress field is the stress field in the plastic zone under the 

lower bound limit load. 

3.3 Numerical solution for the LBM 

Due to the complexity of practical problems, it is generally difficult to achieve the 

analytical solution of the LBM. The numerical method presented by Lysmer and 

Sloan (Sloan method for short) is often used in practical. Sloan method is only 

suitable for computing the lower bound limit load, non-suitable for the plastic stress 

field due to its model.  A numerical solution of the LBM named as limit element 

method (LEM for short) is proposed in this paper, which is not only suitable for 

computing the lower bound limit load but also for the plastic stress field. 

4 Brief review of Sloan method. 

In Sloan method, the soil is discretized into a collection of 3-noded triangular 

elements with the nodal unique to particular element and the variables being the 

unknown stresses. Statically admissible stress discontinuities are permitted to occur at 

the interfaces between adjacent triangles. Application of the stress-boundary 

conditions, equilibrium equations and yield criterion lead to an expression for the 

collapse load which is maximized subject to a set of linear constraints on the stresses. 

In order to avoid nonlinear constraints occurring in the constraint matrix, the yield 

criterion must be expressed as a linear function of the unknown stresses. For Mohr-

Coulomb yield criteria, this is achieved by employing a polygonal approximation to 

the yield surface. The polygon is defined so that it lies inside the parent yield surface, 

thus ensuring that the solution obeys the conditions of the lower bound theorem. 

4.1 Meshes and the node unique to particular element 

In Sloan method, the triangular elements are used to model the stress field under 

conditions of plane strain. A mesh of linear stress triangles is shown in Fig. 1. Unlike 

the usual form of the finite element method, each node is unique to a particular 

element and more than one node may share the same co-ordinates. Statically 

admissible stress discontinuities are permitted at shared edges between adjacent 

triangles. If E denotes the number of triangles in the mesh, then there are 3E nodes 

and 9E unknown stresses. 
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Fig. 1. Mesh of triangles of Sloan method 

4.2 Variables 

Variables are all the nodes stresses, denoted as σn. 

4.3 Objective functions 

Linear objective function is employed as follow in Sloan method: 

 CTσn (2) 

where CT is the objective vector. 

4.4 Element equilibrium equations 

The variation of the stress throughout each triangular element is linear and each node 

is associated with 3 unknown stresses of σx, σy and τxy. Each stress varies throughout 

an element according to 

 σx = ∑ Niσxi
3
i=1 ,    σy = ∑ Niσyi

3
i=1 ,    τxy = ∑ Niτxyi

3
i=1  (3) 

where 

σx, σy, τxy - the nodal stresses; 

Ni - linear shape functions. 

According to the static equilibrium differential equations, the element equilibrium 

equations can be written as follow: 

 A1σn = b1 (4) 

4.5 Stress boundary conditions 

The stress boundary conditions can be written as follow: 

 A2σn = b2 (5) 

Numerical solution of Lower bound theorem             205



4.6 Yield condition 

Assuming tensile stresses are taken as positive and plane strain conditions, the Mohr-

Coulomb yield criterion may be expressed as 

 (σx − σy)
2

+ (2τxy)
2

− (2c ∙ cosφ − (σx + σy)sinφ)
2

≤ 0 (6) 

The linearized Mohr-Coulomb yield criterion can be written as follow 

 Akσx + Bkσy + Ckτxy ≤ D (7) 

where 

Ak = cos(2πk/p) + sin∅cos(π/p) 

Bk = sin∅cos(π/p) − cos(2πk/p) 

Ck = 2sin(2πk/p) 

D = 2ccos∅cos(π/p) 

k = 1,2, … , p 

The linearized Mohr-Coulomb yield criterion can be written as follow: 

 A3σn ≤ b3 (8) 

4.7 Discontinuity equilibrium 

In order to permit statically admissible discontinuities at the edges of adjacent 

triangles, it is necessary to enforce additional constraints on the nodal stresses. A 

statically admissible discontinuity permits the tangential stress to be discontinuous, 

but requires that continuity of the corresponding shear and normal components is 

preserved. Fig. 2 illustrates two triangles, a and b, which share a side d defined by the 

nodal pairs (1, 2) and (3, 4).  Since the stresses vary linearly along each element edge, 

this condition is equivalent to enforcing the constraints 

 σn1
a = σn2

b ,    σn3
a = σn4

b ,   τ1
a = τ2

b,    τ3
a = τ4

b (9) 

 

Fig. 2. Discontinuity equilibrium between adjacent triangles 
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The linearized discontinuity equilibrium can be written as follow: 

 A4σn = b4 (10) 

4.8 Linear programming model 

With the linearized equilibrium equation constraints, the linearized stress boundary 

conditions, linearized yield criterion, discontinuity equilibrium and linearized 

objective function, the linear programming model of the lower bound theorem can be 

written as follow 

 max CTσn (11) 

st.      A1σn = b1 

A2σn = b2 

A3σn ≤ b3 

A4σn = b4 

where 

σn - global vector of nodal stresses; 

CT - objective vector; 

A1σn = b1, equilibrium equation constraints; 

A2σn = b2, stress boundary condition constraints; 

A3σn ≤ b3, yield criterion constraints; 

A4σn = b4, discontinuity equilibrium constraints. 

4.9 Solution of lower bound limit load and plastic stress field 

The mathematical model of Sloan's method is a linear programming model, and the 

maximum value of the objective function is the lower bound limit load. 

Due to the node unique to particular element in Sloan method, each feasible 

solution of the linear programming model has multiple groups of node stresses at the 

same node coordinates, resulting in that the feasible solution of the linear 

programming model cannot form a statically admissible stress field. Therefore, Sloan 

method is only suitable for solving the limit load, not for solving the plastic stress 

field. 

5 Limit element method 

5.1 Mesh 

Triangular elements are used to model the stress field under conditions of plane strain, 

which is like the usual form of the finite element method but different from Sloan 

method. Each node with stresses σx, σy and τxy is co-owned by the elements around 

the node rather than unique to a particular element. A mesh of triangular elements is 
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shown in Fig. 3. If E denotes the quantity of the nodes in the mesh, then there are 3E 

unknown stresses. 

 

Fig. 3. Mesh of triangular of LEM 

5.2 Node equilibrium equations 

Static equilibrium differential equations are as follow 

 
∂σx

∂x
+

∂τxy

∂y
= bX (12) 

∂τxy

∂x
+

∂σy

∂y
= bY 

By integrating Eq. (12) over the area D of the element around the node, the 

following equations can be achieved 

 ∬ (
∂σx

∂x
+

∂τxy

∂y
) dxdy

D
= ∬ bXdxdy

D
 (13) 

∬ (
∂τxy

∂x
+

∂σy

∂y
) dxdy

D

= ∬ bYdxdy

D

 

Green theorem is as follow 

 ∬ (
∂Q

∂x
−

∂P

∂y
) dxdy

D
= ∮ Pdx + Qdy

L
 (14) 

According to the Eq. (13) and Eq. (14), the following can be achieved 

 ∮ (−τxy)dx + σxdy
L

= ∬ bXdxdy
D

 (15) 

 ∮ (−σy)dx + τxydy
L

= ∬ bYdxdy
D

 

 (16) 

where 

L –boundary of area D of the element around the node. 
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Eq. (15) and Eq. (16) are the static node equilibrium integral equations. In Eq. (15), 

∮ (−τxy)dx
L

 denotes the resultant force of the shear stress τxy around the boundary of 

the area D in X direction; and ∮ σxdy
L

 denotes the resultant force of the normal stress 

σx  around the boundary of the area D in X direction; and ∬ bXdxdy
D

 denotes the 

resultant body force in area D in X direction. In Eq. (9), ∮ (τxy)dx
L

 denotes the 

resultant force of the shear stress τxy  around the boundary of the area D in Y 

direction; and ∮ (−σy)dy
L

 denotes the resultant force of the normal stress σy around 

the boundary of the area D in Y direction; and ∬ bYdxdy
D

 denotes the resultant body 

force in area D in Y direction. 

The Eq. (15) and Eq. (16) shows that the resultant force of the stresses around the 

boundary of the area D equals to the resultant body force over the area D in X 

direction and Y direction respectively.  

The stresses vary linearly along the element boundary. The normal stress σx and 

the shear stress τyx along the triangular boundary are shown in Fig. 4. The normal 

stress σy and the shear stress τxy along the triangular boundary are shown in Fig. 5.  

 

Fig. 4. Normal stress σx and shear stress τyx along the triangular boundary  

 

Fig. 5. Normal stress σy and shear stress τxy along the triangular boundary 
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According to Eq. (15) and Eq. (16), node equilibrium equations can be achieved as 

follow:  

 [Ae][σe] = [be] (17) 

where 

[Ae] = [
η1 0 ζ1

0 ζ1 η1

η2 0 ζ2

0 ζ2 η2

η3 0 ζ3

0 ζ3 η3

η4 0 ζ4

0 ζ4 η4

η5 0 ζ5

0 ζ5 η5

η6 0 ζ6

0 ζ6 η6
]; 

[σe] = [σx1 σy1 τxy1 σx2 σy2 τxy2 σx3 σy3 τxy3 
σx4 σy4 τxy4 σx5 σy5 τxy5 σx6 σy6 τxy6] 

[be] = [∬ bXdxdy
D

∬ bYdxdy
D

]
T

; 

η1 =
1

2
(y2 − y6);    η2 =

1

2
(y3 − y1); 

η3 =
1

2
(y4 − y2);    η4 =

1

2
(y5 − y3); 

η5 =
1

2
(y6 − y4);    η6 =

1

2
(y1 − y5); 

ζ1 =
1

2
(x6 − x2);    ζ2 =

1

2
(x1 − x3); 

ζ3 =
1

2
(x2 − x4);    ζ4 =

1

2
(x3 − x5); 

ζ5 =
1

2
(x4 − x6);    ζ6 =

1

2
(x5 − x1). 

Assembling all the node equilibrium integral equations for the overall meshes into 

constraint matrix, the overall equilibrium constraints matrix can be achieved as follow 

 A1σn = b1 (18) 

5.3 Stress boundary conditions 

The stress boundary conditions can be written as follow: 

 A2σn = b2 (19) 

5.4 Yield condition 

The Mohr-Coulomb yield criterion can be linearized as follow 

 A3σn ≤ b3 (20) 

5.5 Objective function 

The objective function may be written as follow 

 CTσn (21) 

5.6 Linear programming model 

According to Eq. (18), Eq. (19), Eq. (20) and Eq. (21), the linear programming model 

of the lower bound theorem can be written as follow 
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 max CTσn (22) 

st.      A1σn = b1 

A2σn = b2 

A3σn ≤ b3 

where 

σn - variables, the stresses σx, σy and τxy of the nodes; 

CT - objective vector; 

A1σn = b1, equilibrium equations constraints; 

A2σn = b2, stress boundary conditions constraints; 

A3σn ≤ b3, yield criterion constraints. 

6 Discussion on Sloan method and LEM 

6.1 Preparations - degree of relative freedom 

According to the linear theory, for a linear equations with n variables and m equations 

 Am×nxn×1 = bm×1 (23) 

there are conclusions as follow: 

(1) if rank [Am×n] = rank [Am×n bm×1] < n, the Eq. (23) has infinite solutions; 

(2) if rank [Am×n] = rank [Am×n bm×1] = n, the Eq. (23) has unique solution; 

(3) if rank [Am×n] < rank [Am×n bm×1], the Eq. (23) has no solution. 

The linear equilibrium equations produced by the Sloan method or LEM are as 

follow 

 Am×nσn×1 = bm×1 (24) 

The degree of relative freedom is defined as 

 Fr =
n

m
 (25) 

where 

Fr– degree of relative freedom; 

n – quantity of variables in Eq. (25); 

m – quantity of equations in Eq. (25). 

Based on the Eq. (23), the following statements are acceptable 

(1) if Fr > 1, the Eq. (25) has infinite solutions; 

(2) if Fr = 1, the Eq. (25) has unique solution; 

(3) if Fr < 1, the Eq. (25) has no solution. 

6.2 Degree of Relative freedom of triangular elements 

Triangular elements are employed for meshing without the assumption of the node 

unique to particular element.  
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Since the average internal angle degree of the triangular element is 60 °, as shown 

in Fig.6, there should be 360°/60°=6 elements around one node in average.  

 

Fig. 6 Triangular elements around one node 

For each node, there are 3 variables, σx, σy  and τxy . The quantity of variables 

corresponding to each element may be regarded as 3/6=0.5.  A triangular element has 

3 nodes, so the average quantity of variables corresponding to one triangular element 

is 0.5×3=1.5. For each triangular element, the element equilibrium equations produce 

2 equality constraints. According to Eq. (25), the degree of relative freedom is as 

follow 

 Fr =
1.5

2
= 0.75 (26) 

The element equilibrium equations has no solution since Fr < 1,  so the lower 

bound limit load or the plastic stress field cannot be computed by the triangular 

element equations without the assumption of the node unique to particular element. 

One example as shown in Fig. 7, a rectangular area is meshed with triangular 

elements without node unique to particular element. In the horizontal direction, it is 

discretized into m elements with m+1 nodes, and in the vertical direction, it is 

discretized into n elements with n+1 nodes. The total quantity of the variables is 

3(m+1) (n+1), since each node has 3 variables  σx, σy and τxy. The total quantity of 

equality constraints of the equilibrium equation is 4mn, since there are 2mn elements 

and each element has 2 equilibrium equations.  

The linear equilibrium equations produced by the lower bound theorem are as 

follow 

 A(4mn)×(3(m+1) (n+1))σ(3(m+1) (n+1))×1 = b(4mn)×1 (27) 

The degree of relative freedom of Eq. (27) is as follow 

 Fr =
3(m+1)(n+1)

4mn
 (28) 

If m and n are both large enough, Fr ≈
3

4
< 1. The Eq. (27) has no solution since 

Fr < 1, so the lower bound limit load or the plastic stress field cannot be computed by 

the triangular element equations without assumption of the node unique to particular 

element. 
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Fig. 7Triangular elements in rectangular 

6.3 Degree of relative freedom of Sloan method 

Triangular elements are employed for meshing with the assumption of the node 

unique to particular element, which is inevitably associated with the discontinuity 

equilibrium.  

For each node, there are 3 variables, σx, σy  and τxy. A triangular element has 3 

nodes, so the total quantity of variables corresponding to one triangular element is 3 × 

3=9.  

The equilibrium equations produce 2 equality constraints on each element. 

The discontinuity equilibrium produces 4 equality constraints on each common 

edge of adjacent triangular elements, so there are 2 equality constraints corresponding 

to one element. Each triangular element has 3 common edges on average, so the 

discontinuous equilibrium produces 6 equality constraints on one triangular element 

on average. Therefore, a triangular element has total 8 equality constraints on average. 

According to Eq. (25), the degree of relative freedom is as follow 

 Fr =
9

8
= 1.125 (29) 

The element equilibrium equations has infinite solutions since Fr > 1 ,  so the 

lower bound limit load or the plastic stress field can possibly be computed by Sloan 

method. 

One example as shown in Fig. 7, a rectangular area is meshed with the assumption 

of the node unique to particular element. In the horizontal direction, it is discretized 

into m elements with m+1 nodes, and in the vertical direction, it is discretized into n 

elements with n+1 nodes. There are 2mn elements and each element has 9 variables  

σx, σy and τxy, so the total quantity of the variables is 18mn. 

There are 2mn elements and each element has 2 equilibrium equations, so the 

quantity of equilibrium equation constraints is 4mn. The mesh has 3mn-m-n common 

edges of adjacent triangular elements, so the discontinuous equilibrium produces 

12mn-4m-4n equality constraints. The total quantity of equality constraints is 16mn-

4m-4n.  
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The linear equilibrium equations constraints generated by the lower bound theorem 

are as follow 

 A(16mn−4m−4n)×(18mn)σ(18mn)×1 = b(16mn−4m−4n)×1 (30) 

The degree of relative freedom of Eq. (30) is as follow 

 Fr =
18mn

16mn−4m−4n
 (31) 

The Eq. (30) has infinite solutions since Fr ≈
18

16
> 1,  so the lower bound limit 

load and the plastic stress field can possibly be computed by Sloan method. 

6.4 Degree of relative freedom of LEM 

For each node, there are 3 variables, σx, σy  and τxy , and the node equilibrium 

equations produce 2 equality constraints. According to Eq. (25), the degree of relative 

freedom is as follow 

 Fr =
3

2
= 1.5 (32) 

The Eq. (32) has infinite solutions since Fr > 1,  so the lower bound limit load or 

the plastic stress field can possibly be computed by LEM method. 

One example as shown in Fig. 7, a rectangular area is meshed with triangular 

elements without node unique to particular element. In the horizontal direction, it is 

discretized into m elements with m+1 nodes, and in the vertical direction, it is 

discretized into n elements with n+1 nodes. The total quantity of the variables is 

3(m+1) (n+1), since each node has 3 variables  σx, σy and τxy. The total quantity of 

equality constraints of the equilibrium equation is 2(m+1) (n+1), since there are 

(m+1) (n+1) nodes and each node has 2 equilibrium equations.  

The linear equilibrium equations constraints generated by the lower bound theorem 

are as follow 

 A2(m+1) (n+1)×3(m+1) (n+1)σ3(m+1) (n+1)×1 = b2(m+1) (n+1)×1 (33) 

The degree of relative freedom of Eq. (33) is as follow 

 Fr =
3(m+1) (n+1)

2(m+1) (n+1)
 (34) 

The Eq. (33) has infinite solutions since Fr =
3

2
> 1,  so the lower bound limit load 

and the plastic stress field can possibly be computed by LEM. 

6.5 Discussion 

The key difference between LEM and Sloan method is the equilibrium equations type, 

which will lead to the following results: 
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(1) If element equilibrium equations are employed for triangular element meshing 

without the assumption of the node unique to particular element, the model has no 

solution, so the lower bound limit loads or the plastic stress field cannot be computed. 

(2) If element equilibrium equations are employed for triangular element meshing 

with the assumption of the node unique to particular element, which is inevitably 

associated with the discontinuity equilibrium, the LBM has infinite solutions, so the 

lower bound limit loads and the plastic stress field can possibly be computed. 

(3) If node equilibrium equations are employed for triangular meshing without the 

assumption of the node unique to particular element, the model has infinite solutions, 

so the lower bound limit loads and the plastic stress field can possibly be computed. 

(4) The assumption of the node unique to particular element is only inevitable by 

the element equilibrium equations rather than the node equilibrium equations. 

(5) Each feasible solution of LEM produces a statically admissible stress field. A 

series of statically admissible stress field can be achieved. 

(6) The feasible solution of the Sloan method does not produce the statically 

admissible stress field due to the node unique to particular element. 

7 Examples 

7.1 Bearing capacity of strip foundation 

The bearing capacity of a strip foundation can be described as an evenly distributed 

load of a certain width applied on the surface of a horizontal foundation with an 

infinite length.  

The following data are used: horizontal direction: a width of 50 m, discretized into 

50 elements with a width of 1 m; vertical direction: a height of 10 m, discretized into 

10 elements with a width of 1 m; the evenly distributed load is located in the middle 

of the top, and the width of the load is 20 m, as shown in Fig. 8.  

 

Fig. 8 Model for bearing capacity of cohesive foundation 

When the soil γ = 0 and internal friction degree φ = 0, the lower bound limit load 

can be achieved by the Prandtl’s solution Eq. (33):  

 
q

c
= π + 2 (35) 
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Based on LEM, the lower bound limit load 
q

c
= 4.7836 , while the Prandtl’s 

solution 
q

c
= 5.1416. The relative error is 6.96%. The example shows that LEM has 

good capacity.  

7.2 Plastic stress field 

 

Fig. 9 Plastic stress field 

The plastic zone of the strip foundation given by slip line under the action of ultimate 

load is shown in the shaded area in Figure 9. The plastic nodes computed by LEM are 

shown with circle point in Figure 9, and the other nodes are non-plastic nodes. It can 

be seen that LEM has applicability for solving plastic stress field. 

8 Conclusion 

LEM for solving plastic stress field based on the lower bound theorem is proposed in 

this paper. LEM uses the node equilibrium equations rather than the element 

equilibrium equations. The equilibrium differential equations over the area of element 

around the node are transformed into the equilibrium integral equations along the 

boundary by Green’s theorem. A linear programming model is developed with the 

variables of nodes stresses, linearized objective functions, equilibrium equations, 

stress boundary conditions and yield criteria constraints. The lower bound limit load 

and plastic stress field can be computed from the model. The further analysis shows 

that it is necessary only for the element equilibrium equations to introduce the node 

unique to a particular element, which will cause the linear programming model 

suitable only for the lower bound limit load, not for the plastic stress field. For the 

node equilibrium equations, it is not necessary to introduce the node unique to a 

particular element. The linear programming model with the node equilibrium 

equations is suitable for both the lower bound limit load and the plastic stress field. 

One example for the lower bound limit load and the plastic stress field illustrates the 

capability of LEM. 
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