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Abstract. The earth pressure with finite width is often encountered in 

engineering. Theoretical research and engineering practice show that the 

classical Rankine and Coulomb equations are not suitable for active earth 

pressure with finite width. In this paper, based on the lower bound theorem in 

plastic mechanics, the lower bound model for the active earth pressure of 

cohesionless soil with finite width is created, and the corresponding numerical 

solution method is provided. The active earth pressures and the distributions 

under different soil heights are calculated and analyzed. The results indicate 

that the active earth pressure of cohesionless soil with finite width is smaller 

than the corresponding Coulomb active earth pressure. As the burial depth of 

the soil increases, the active earth pressure and vertical friction between the soil 

and the wall continue to increase. Finally, the weight of the soil and the vertical 

friction between the soil and the wall reach an equilibrium state, and the soil 

pressure tends to a limit value. The calculation results and methods in this 

article can provide useful reference and guidance for the calculation of earth 

pressure. 
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1 Introduction 

The calculation of earth pressure is a classic problem in soil mechanics and a current 

hot topic in theoretical and engineering research in the field of soil mechanics  [1]. The 

classical Rankine and Coulomb earth pressure calculation theories and methods are 

widely adopted due to their clear concepts and computational simplicity, assuming 

semi-infinite soil mass behind the retaining wall during calculations [2]. However, in 

engineering practice, problems often arise involving finite-width earth pressure, such 

as in backfilled road embankments in mountainous areas and deep excavation support 

structures near adjacent buildings [3-6]. Both theoretical studies [7-9] and engineering 

practice [10] have shown that the classical Rankine and Coulomb earth pressure 

theories are not well-suited for the calculation of active earth pressure within finite 

widths. 
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The main reason for this maladaptation is that Rankine or Coulomb earth pressure 

assumes that the soil is sufficiently wide or infinitely wide, and the actual earth 

pressure is directly related to the width of the soil within a certain range. Only when 

the width of the soil exceeds the plastic range of active earth pressure, the active earth 

pressure is independent of the soil width. 

In this paper, based on the lower bound theorem in plastic mechanics, we establish 

a lower bound model, provide a numerical solution for the lower bound model, and 

numerically solve the problem of active earth pressure produced by cohesionless fill 

soil within a finite width. This study aims to provide references for engineering 

practice and relevant theoretical research. 

2 Lower Bound Model 

2.1 Lower Bound Theorem 

For ideal rigid-plastic materials, the lower bound theorem can be stated as follows: 

any static equilibrium stress field constitutes a lower bound solution for the ultimate 

load. A static equilibrium stress field refers to a stress field that simultaneously 

satisfies the following conditions: 

(a) Equilibrium equations; 

(b) Stress boundary conditions; 

(c) Yield criterion constraints. 

2.2 Lower Bound Model 

Assuming that V represents the study domain and S represents its surface, the lower 

bound model can be expressed as follows: 

 

max
st.

Q(σ)

E(σ) = bV
B(σ) = bS
F(σ) ≤ 0 }

 

 
 (1) 

In the equation: 

σ – Stress field, the independent variable; 

Q(σ) – Objective function; 

bV – Unit body force; 

E(σ) = bV, Equilibrium differential equation; 

B(σ) = bS, Stress boundary conditions; 

F(σ) ≤ 0, Yield criterion constraint. 

From Equation (1), it can be observed that the lower bound model is an 

optimization model with both equality and inequality constraints. 
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3 Numerical Solution for the Lower Bound Model 

Due to the complexity of practical problems, obtaining an analytical solution for the 

lower bound model is often challenging. In engineering, numerical methods are 

commonly employed. Taking the example of a plane strain problem, a mesh is created 

using quadrilateral elements. The stresses at all nodes are taken as independent 

variables. The objective function, equilibrium differential equation, stress boundary 

conditions, and yield criterion constraints from Equation (1) are linearized. This 

linearization results in a linear programming model. Solving the linear programming 

model provides the ultimate load for the respective problem. The details are described 

below. 

3.1 Mesh Generation 

For the plane strain problem, a mesh is generated using quadrilateral elements. Let 

there be a total of N nodes and M elements in the mesh. 

3.2 Independent Variables 

The stress components at all nodes are considered as the independent variables and 

are denoted as σn . Since there are N nodes in the mesh, σn  is a 3N-dimensional 

column vector. 

3.3 Objective Function 

For the linearized objective function, it can be generally represented as: 

 CTσn (2) 

where CT is the objective vector. 

3.4 Equilibrium Equations 

For the element under the action of body forces and surrounding stresses, equilibrium 

must be maintained in the X and Y directions. Assuming the stress distribution on the 

element's boundaries is linear, the stress distribution in the X direction on the 

element's boundary is shown in Figure 1, and the stress distribution in the Y direction 

on the element's boundary is shown in Figure 2. The equilibrium equations for the 

element in the X and Y directions can be expressed as follows: 

 [Ae][σe] = [be] (3) 

In the equation: 

[Ae] = [
η1 0 ζ1 η2 0 ζ2 η3 0 ζ3 η4 0 ζ4
0 ζ1 η1 0 ζ2 η2 0 ζ3 η3 0 ζ4 η4

]; 

[σe] = [σx1 σy1 τxy1 σx2 σy2 τxy2 σx3 σy3 τxy3 σx4 σy4 τxy4]; 
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[be] = [Agx Agy]T; 

η1 =
1

2
(y2 − y4);    η2 =

1

2
(y3 − y1); 

η3 =
1

2
(y4 − y2);   η4 =

1

2
(y1 − y3); 

ζ1 =
1

2
(x4 − x2);    ζ2 =

1

2
(x1 − x3); 

ζ3 =
1

2
(x2 − x4);    ζ4 =

1

2
(x3 − x1). 

where A is the element area, gx and gy are the gravitational accelerations in the X 

and Y directions, respectively. 

 

Fig. 1. Stress along the element boundary in X direction. 

 

Fig. 2. Stress along the element boundary in the Y direction 
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Integrating the equilibrium equations for all elements, we can obtain the general 

form of the overall equilibrium equations as follows: 

 A1σn = b1 (4) 

3.5 Stress Boundary Conditions 

Stress boundary conditions essentially represent equality constraints applied to the 

stresses. Utilizing linearized stress boundary conditions, they can be generally 

denoted as: 

 A2σn = b2 (5) 

3.6 Yield Criterion 

The Mohr-Coulomb yield criterion can be expressed as follows: 

 (σx − σy)
2
+ (2τxy)

2
− [2c ∙ cosφ − (σx + σy)sinφ]

2
≤ 0 (6) 

In the coordinate system of σx, σy, and τxy, the region represented by Equation (6) 

is an ellipsoidal cone. Utilizing an inscribed polyhedral cone approximation, Equation 

(6) can be written as [11]: 

 Akσx + Bkσy + Ckτxy ≤ D (7) 

In the equation: 

Ak = cos(2πk/p) + sin∅cos(π/p); 
Bk = sin∅cos(π/p) − cos(2πk/p); 

Ck = 2sin(2πk/p); 
D = 2ccos∅cos(π/p); 

k = 1,2, … , p. 

All nodal stresses must satisfy the yield criterion. By integrating all linearized 

nodal stress yield criterion constraints, the linearized yield criterion constraints can be 

generally denoted as: 

 A3σn ≤ b3 (8) 

3.7 Linearized Model and Solution 

Combining the objective function in Equation (2), equilibrium equations in Equation 

(4), stress boundary conditions in Equation (5), and yield criterion in Equation (8), the 

linearized model for the lower bound theorem can be generally written as: 

 

max
st.

CTσn
A1σn = b1
A2σn = b2
A3σn ≤ b3

} (9) 
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In this equation: 

σn  – Independent variable, nodal stresses; 

CT – Objective vector; 

A1σn = b1– Equilibrium equations; 

A2σn = b2– Stress boundary conditions; 

A3σn ≤ b3– Yield criterion. 

Equation (9) represents a linear programming model with both equality and 

inequality constraints, which can be solved using linear programming software. 

4 Active Earth Pressure for Cohesionless Soil with Finite Width 

The finite width, cohesionless soil discussed in this paper specifically refers to the 

rectangular area with a height of H and width B, as shown in Figure 3. The resultant 

force of active earth pressure mentioned here specifically refers to the minimum value 

of the horizontal component of the earth pressure exerted by the soil on the left wall 

L2 (positive for compression). The distribution of active earth pressure refers to the 

corresponding earth pressure distribution acting on the left wall L2 corresponding to 

the resultant force of active earth pressure. 

 

Fig. 3. Cohesionless soil with finite width 

The lower bound model described in Section 2 is utilized for this case study. In this 

example, the given width of the soil (B) is 10 m, and the height of the soil (H) is taken 

as 10 m, 20 m, 30 m, 40 m, 50 m, 60 m, 70 m, 80 m, and 90 m. The unit weight of the 

soil is 18 kN/m3, cohesion (c) is 0, and the internal friction angle (φ) is 36°. There is 

no cohesion and a friction angle of φ=36° between the soil and the walls L2, L3, and 

L4 . At the upper surface L1  of the soil, both the vertical normal stress and the 

horizontal shear stress are zero. 

The numerical solution method for the lower bound model described in Section 3 

is applied. For this example, the mesh is partitioned as follows: divided into ten 
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elements in the horizontal direction, with a horizontal width of 1.0m for each element; 

divided into H elements in the vertical direction, with a vertical height of 1.0m for 

each element, as shown in Figure 4. 

 

Fig. 4. Mesh of cohesionless soil with finite width 

5 Calculation Results and Analysis 

5.1 Total Active Earth Pressure 

The total active earth pressure obtained through the lower bound method for different 

soil heights (H) with a soil width of B=10 m is shown in Table 1. For comparison, the 

corresponding Coulomb active earth pressure is also provided in Table 1. 

From Table 1, it can be observed that the total active earth pressure obtained 

through the lower bound method increases with the height of the soil, but it is less 

than the corresponding Coulomb active earth pressure. 

The relationship between the total active earth pressure obtained through the lower 

bound method and the soil height is shown in Figure 5. For comparison, Figure 5 also 

depicts the relationship between the corresponding Coulomb active earth pressure and 

the soil height. 

From Figure 5, it can be seen that the trend of the total active earth pressure 

obtained through the lower bound method with respect to soil height is significantly 

slower compared to the increasing trend of Coulomb active earth pressure with 

respect to soil height. 
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Table 1. Active pressure in different heights of soil 

Soil Height H 

(m) 

Active earth pressure obtained 

through the lower bound 

method (MN) 

Coulomb active earth 

pressure (MN) 

10 0.18 0.22 

20 0.72 0.87 

30 1.53 1.95 

40 2.49 3.47 

50 3.56 5.43 

60 4.69 7.82 

70 5.86 10.64 

80 7.06 13.90 

90 8.27 17.59 

 

Fig. 5. Relationship between active pressure and soil height  

5.2 Distribution of Active Earth Pressure 

The distribution of active earth pressure obtained through the lower bound method for 

different soil heights (H) with a soil width of B=10 m is shown in Figure 6. For 

comparison, the corresponding distribution of Coulomb active earth pressure is also 

provided in Figure 6. 

The distribution of active earth pressure obtained through the lower bound method 

for a soil width of B=10 m and a soil height of H=90 m is shown in Figure 7. For 

comparison, the corresponding distribution of Coulomb active earth pressure is also 

provided in Figure 7. 

From Figure 6 and Figure 7, it can be observed that the active earth pressure 

obtained through the lower bound method increases with the depth of the soil and 

tends towards a certain limit value, Plim. For different soil heights, the soil pressure at 

the same depth shows consistency. Near the bottom of the soil, within a certain range, 

there is a slight fluctuation in the earth pressure due to the influence of the 

computational model and boundaries. 
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Fig. 6. Active press distribution under different soil heights 

 

Fig. 7. Active press distribution with soil height 90m 
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The limiting value of earth pressure, Plim, for a soil with finite width can be 

understood as follows: as the depth of the soil increases, the lateral pressure exerted 

by the soil on the retaining wall continuously increases. The vertical frictional force 

between the soil and the wall also increases accordingly. Ultimately, a balance is 

reached between the weight of the soil and the vertical frictional force between the 

soil and the wall, as shown in Figure 8. 

 

Fig. 8. Active press distribution with soil height 90m 

The corresponding limit value of earth pressure associated with this equilibrium 

state should be: 

 Plim =
γB

2tanφ
 (10) 

For this example, with B=10 m, γ=18 kN/m3, φ=36°, the calculated Plim  is 

approximately 123.87 kPa. This limit value is presented in Figure 6 and Figure 7. It 

can be observed from Figure 6 and Figure 7 that the calculated results using the lower 

bound method are consistent with the limit value calculated based on Equation (10). 

6 Conclusion 

This article only takes finite width soil pressure as an example, and actually provides 

a general method to creat serial equilibrium stress field. Based on this method, a 

general numerical solution for the lower bound theorem is provided. So the lower 

bound theorem and  the corresponding numerical solution method presented in this 

paper can be applied not only to solve earth pressure problems but also to address 

issues related to foundation bearing capacity, slope stability, and underground cavity 

stability. 
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