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Abstract. Stunting remains a significant public health issue in Indonesia, and 

numerous research studies have been conducted to address this problem. In 2021, 

The Bayesian Spatial Conditional Autoregressive (CAR) Localized model was 

implemented across all 34 Indonesian provinces, revealing that approximately 

56% of these provinces are at high risk of stunting. Furthermore, the Bayesian 

Spatial CAR Leroux model was employed to simulate the relative risk (RR) of 

stunting cases in one of Indonesia's provinces, South Sulawesi. The main objec-

tives of this study were to determine the most suitable Bayesian CAR Localized 

model, estimate the RR of stunting, and identify the factors influencing stunting 

cases in South Sulawesi Province. Data on the number of stunting cases in each 

district of South Sulawesi Province in 2021 were collected from the South Sula-

wesi Provincial Health Service and utilized in this study. Population data for 2021 

were obtained from the South Sulawesi Provincial Central Statistics Agency. 

Three covariates were included in this study: the number of people living in pov-

erty, the number of malnourished children, and the number of children with com-

plete basic immunizations. The findings revealed that the Bayesian spatial CAR 

Localized model with a hyperprior Inverse-Gamma IG (1;0.01) and two clusters, 

incorporating all three variables, was the most suitable model for predicting 

stunting cases in South Sulawesi Province in 2021. The number of people living 

in poverty and the number of malnourished children were positively correlated 

with the risk of stunting. Conversely, the number of children who have received 

all their baseline immunizations was inversely associated with the risk of stunt-

ing. Stunting affected approximately 54.17% of districts in South Sulawesi Prov-

ince, with Jeneponto having the highest RR of stunting (RR=1.37) and Makassar 

having the lowest RR (RR=0.68) among the districts in the province. 
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1 Introduction 

Stunting in children under the age of five is a manifestation of inadequate growth 

due to prolonged malnutrition [1]. Malnutrition in children who are stunted occurs from 

the time the baby is in the womb until after birth, which is commonly referred to as the  
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First 1,000 Days of Life (HPK). Stunting is still a major public health problem in de-

veloping countries including Indonesia. Addressing stunting has become a priority tar-

get both globally and in Indonesia. 

Research on modelling stunting cases in Indonesia has been conducted, involving 

the implementation of the Bayesian Localized spatial Conditional Autoregressive 

(CAR) model to model stunting cases in all 34 provinces in Indonesia in 2021 [2]. The 

research findings suggest that around 56% of Indonesian provinces are at a significant 

risk of experiencing stunting. Sulawesi Barat has the highest Relative Risk (RR) for 

stunting, with East Nusa Tenggara and West Papua following closely behind. Con-

versely, Jakarta has the lowest RR for stunting, followed by North Sulawesi and South 

Sumatra. Additionally, another study has focused on modeling the RR of stunting cases 

in one Indonesian province, South Sulawesi, using the Bayesian Spatial CAR Leroux 

model, without incorporating covariates [3]. Another study has explored the factors 

influencing stunting cases in South Sulawesi Province in 2020, incorporating covariates 

such as the percentage of poverty, the percentage of exclusive breastfeeding, and the 

percentage of children aged 0-59 months who were malnourished [4]. Their findings 

indicate that both the percentage of poverty and the percentage of malnutrition among 

children aged 0-59 months contribute to an increase of stunting. This research aims to 

determine the best Bayesian CAR Localised model, estimate the RR of stunting, and 

identify the factors that influence stunting cases in South Sulawesi Province in 2021. 

2 Methods 

2.1 Data 

The number of stunting cases in each district in South Sulawesi province for the year 

2021 was obtained from the South Sulawesi Provincial Health Service. The covariates 

used include the following variables: the number of people living in poverty (X1), the 

number of malnourished children (X2), and the number of children with complete basic 

immunizations (X3). 

 

2.2 Spatial Autocorrelation 

Moran's Index (MI) is a commonly used metric for assessing the extent of spatial cor-

relation in both ordinal and interval data. It was introduced by Moran in 1950 [5]. How-

ever, Moran's I tends to underestimate spatial autocorrelation in cases involving fewer 

than 100 areas. To address this limitation, a modified version known as Modified Mo-

ran's I (MMI) was introduced [6]. MMI is specifically designed to detect spatial de-

pendence even when dealing with a limited number of areas. The calculation of MMI 

statistics is performed as follows.  

 

MMI =
∑ (𝑌𝑖−𝑌̅)(∑ 𝒘𝒊𝒌𝑌𝑘−𝑌̅)𝒏

𝒋=𝟏
𝒏
𝒊=𝟏

[∑ (𝑌𝑖−𝑌̅)𝟐𝒏
𝒊=𝟏 ]

𝟏/𝟐
[∑ (∑ 𝒘𝒊𝒌𝒀𝒌−𝒀̅𝒏

𝒋=𝟏 )
𝟐

𝒏
𝒊=𝟏 ]

𝟏/𝟐  

where 𝑛 represent the total number of areas, 𝑌𝑖 and 𝑌𝑘 denote the observed value in the 

specific areas i and k, 𝑋̅ represent the average of all the 𝑋 values across the 𝑛 areas, 𝜔𝑖𝑘  
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signifies the spatial weight matrix. The typical choice for a binary spatial matrix in 
Province the context of areal data analysis is a first-order adjacency weight matrix 

which is defined [6] as follows:

𝜔𝑖𝑗 = {
1 if the areas 𝑖 and 𝑗 share a boundary

0  otherwise 
A comprehensive description of MMI can be found in various scholarly publications 

[6, 7]. This study has chosen to utilize queen contiguity among the three available spa-

tial adjacency matrix forms, as it has the potential to enhance the model's overall per-

formance. 

2.3 Relative Risk 

A straightforward way to assess disease risk in regions is by calculating the stand-

ardized incidence ratio (SIR), which is the ratio of observed disease cases to the ex-

pected cases in a given area. Nevertheless, when dealing with small areas with limited 

populations or small sample sizes, SIRs can sometimes yield misleading and unreliable 

results [8]. In such cases, it is preferable to estimate disease risk using Bayesian hierar-

chical models. Utilizing Bayesian hierarchical models, is more advantageous when as-

sessing the relative risk (RR) in smaller regions than relying solely on unadjusted SIR. 

Bayesian approaches allow for the integration of information from neighboring areas 

via prior distributions and the inclusion of covariates within the model, which helps in 

smoothing out or moderating extreme values, resulting in more robust and dependable 

risk estimates. An RR of one signifies that the area has a risk level similar to the average 

of all the areas, whereas RR exceeding one indicate a higher risk than the overall aver-

age, and RR below one signify a lower risk [9, 10]. 

2.4 Model Formulation 

The Bayesian spatial CAR localized model [11] was employed to estimate the 

stunting risk and examine the clusters of stunting cases, both with and without 

additional factors. This model comprises two essential elements: a spatial random effect 

(𝑢i) and the clustering components (𝜆𝑍𝑖
), which allow for distinct neighborhood

random  

A frequently employed method for assessing the RR of diseases, known as a 

Poisson log-linear model [12] was employed to model the number of stunting cases 

(𝑦𝑖) as follows: 

𝑦𝑖~Poisson(𝐸𝑖𝜃𝑖) for i = 1, 2, 3, …, 24 areas 

𝑙𝑜𝑔(𝜃𝑖) = β
0

+ β
1
X1 + β

2
X2 + β

3
X3 + 𝑢𝑖 + 𝜆𝑧𝑖 

𝐸𝑖 represents the expected cases count, and 𝜃𝑖 is the relative risk in the 𝑖th areas. β0 is

the baseline level of RR, while β1, β2 and β3 represent the coefficients for covariate. 

The spatial structured random effect is modelled using an intrinsic conditional 

autoregressive (CAR) prior as follows:  

(𝑢𝑖|𝑢𝑘, 𝑖 ≠ 𝑘, 𝜏𝑢
2)~𝑁 (

∑ k𝜔𝑖𝑘𝑘

∑ 𝜔𝑖𝑘𝑘
,

𝜏𝑢
2

∑ 𝜔𝑖𝑘𝑘
) 
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The spatial weight matrix, denoted 𝜔𝑖𝑘 , is constructed using a combination of binary 

spatial matrix and a first-order adjacency weight matrix. To conduct a sensitivity 

analysis, five different hyperpriors were applied to the variance component 𝜏𝑢
2. These 

hyperpriors include the default choice in CARBayes, which is Inverse-Gamma IG(1; 

0.01), as well as four alternative hyperpriors IG (1; 0.1), IG(0.1; 0.1), IG(0.5, ;0.5) and 

IG(0.5 ;0.0005). Additional insights into the Bayesian spatial CAR localized model are 

available in particular references [13-16]. 

We conducted all the analyses in R software, specifically using version 4.2.2 [17] 

and we employed the CARBayes package version 5.3 [18] to estimate the model 

parameters. We generated Markov chain Monte Carlo (MCMC) samples by running 

12,000 iterations and retaining 13,300 MCMC samples after discarding the initial 1,300 

as a burn-in. To assess the convergence of the MCMC, we created trace and density 

plots. We assessed the suitability of the model formulation and the combination of 

covariates by using several criteria, including the Deviance Information Criterion (DIC) 

[19], the Watanabe Akaike Information Criterion (WAIC) [20] and the Modified 

Moran’s I (MMI) [6, 7] for the residuals. Additionally, we considered whether the 95% 

posterior credible interval contains zero. A lower value of DIC, WAIC, and MMI for 

residuals indicates a better fit of the model. If necessary, we can provide the R code 

used in this study upon request.  

3 Results and Discussion 
3.1 Descriptive Analysis 

The total population in South Sulawesi Province in 2021 is 9139531 people with an 

average of 380813.8, the median 312944.5, and the standard deviation 276480.3. 

Meanwhile, the total number of stunting cases in South Sulawesi Province was 2535182 

cases, with an average of 105632.6, a median of 83526 and a standard deviation of 

69685.83. The areas with the largest and the lowest stunting cases are Bone Regency 

(275,102 cases) and Pare-Pare City (37,925 cases), respectively. Map showing the 

number of stunting cases in each district in South Sulawesi Province in 2021 is given 

in Figure 1.  

Referring to Figure 1, the data reveals that Bone (ID=2) has the highest number of 

stunting cases, totaling 275,102 cases, followed by Makassar (ID=10) with 268,392 

cases, and Gowa (ID=5) with 255,194. Conversely, Pare-Pare (ID=14) reports the 

lowest number of stunting cases at 37,925 cases, followed by Selayar (ID=16) with 

38,219 cases, and Bantaeng (ID=24) with  44,524 cases.  Furthermore, the highest num-

ber of populations is Makassar (ID=10) with 1,427,619, followed by Bone (ID=2) with 

806,750, and Gowa (ID=5) with 773,315. In contrast, the lowest number of population 

is Selayar (ID=16) with 137,974, followed by Pare-Pare (ID=14) with 152,922, and 

Barru (ID=1) with 185,525. 
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Fig. 1. Map showing the number of stunting cases in each district in South Sulawesi Province in 

2021 

3.2 Bayesian Spatial CAR Localised Model 

Bayesian spatial CAR Localised model with G=2, G=3, dan G=5 and different 5 

hyperpriors were used in modeling stunting cases. We have considered different models 

with various covariate combinations and assessed the convergence of the MCMC. Only 

combination models with convergent MCMC results are included in this paper. The 

values of DIC, WAIC and MMI for residual, Credible Interval (CI) for covariate and 

the number of areas included in the cluster (cluster composition) for CAR Localised 

model with G=2, G=3, and G=5 are given in Table 1, 2 and 3, respectively.  

Table 1 provides the results of the Bayesian spatial CAR Localised model with G=2 

with the inclusion of all three covariates. The results indicate that the model using 

hyperprior IG(1;0.01) stands out with the lowest DIC and WAIC values, labeled as M1. 

Additionally, M1 has a residual MMI value that is closest to zero. It is worth noting 

that the number of equivalent regions within each cluster (G1 and G2) remains 

consistent across different hyperpriors. The covariate of number of people living in 

poverty and the number of malnourished children were positively correlated with the 

risk of stunting. However, the number of children who have received all their baseline 

immunizations has a negative and significant associated with the risk of stunting.  

Summary Statistics for Bayesian Spatial CAR localised models with 3 clusters, 

including DIC, WAIC, MMI for residuals, CI, and cluster composition were given in 

Table 2.  
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Table 1. DIC, WAIC, MMI for residuals, CI and cluster composition for CAR Lo-

calised model with G=2.  

Hyperpriors Model 
Co-

variate 
DIC WAIC 

MMI 

residual 

Credible Interval 
(Cluster 

Composition) 

2.5% 97.5% G1 G2 

IG (1;0.01) M1 

X1 

368.25 362.56 -0.12 

0.014 0.017 11 13 

X2 0.042 0.046 

X3 -0.150 -0.146 

IG (1;0.1) M2 

X1 

368.66 362.93 0.15 

0.014 0.015 11 13 

X2 0.041 0.043 

X3 -0.146 -0.144 

IG (0.1;0.1) M3 

X1 

368.76 363.38 -0.22 

0.013 0.014 11 13 

X2 0.040 0.044 

X3 -0.148 -0.144 

IG (0.5;0.5) M4 

X1 

369.41 364.45 -0.43 

0.012 0.015 11 13 

X2 0.041 0.044 

X3 -0.148 -0.145 

IG 

(0.5;0.0005) 
M5 

X1 

368.56 362.61 -0.73 
0.014 0.017 11 13 

X2 0.042 0.045 

X3 -0.149 -0.146 

 

Table 2. DIC, WAIC, MMI for residuals, CI and cluster composition for CAR Lo-

calised model with G=3. 

Hyperpriors Model 
Covari-

ate 
DIC WAIC 

MMI 

residual 

Credible Interval 
Cluster Composi-

tion 

2.5% 97.5% G1 G2 G3 

IG (1;0.01) M6 

X1 

369.50 366.61 -0.62 

0.014 0.015 9 11 4 

X2 0.042 0.044 

X3 -0.148 -0.146 

IG (1;0.1) M7 

X1 

370.76 368.11 -0.30 

0.015 0.018 9 11 4 

X2 0.040 0.043 

X3 -0.148 -0.145 

IG (0.1;0.1) M8 

X1 

371.59 370.27 -0.48 

0.012 0.015 9 11 4 

X2 0.038 0.043 

X3 -0.147 -0.142 

IG (0.5;0.5) M9 

X1 

370.45 368.08 -0.44 

0.014 0.018 9 11 4 

X2 0.039 0.042 

X3 -0.146 -0.144 

IG 

(0.5;0.0005) 
M10 

X1 

370.75 368.15 -0.57 

0.014 0.015 9 11 4 

X2 0.043 0.045 

X3 -0.148 -0.147 

 

Table 2 indicates that the model with the hyperprior IG(1;0.01) (M6) has the lowest 

DIC and WAIC values. Additionally, the model with the hyperprior IG(1;0.1) (M7) 

exhibits a residual MMI value closest to zero. Although the DIC and WAIC values for 
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M6 and M7 are relatively similar, the MMI residual value for M7 is smaller than that 

of M6. Consequently, the M7 model is more suitable than M6. The number of regions 

in each cluster (G1, G2, and G3) remains the same across different hyperpriors. It is 

worth noting that covariates such as the proportion of the poor population and poor 

nutrition show a positive and significant relationship with the risk of stunting, while 

complete basic immunization exhibits a negative and significant relationship with the 

risk of stunting. 

Summary statistics for Bayesian Spatial CAR Localised Models with 5 clusters, 

including DIC, WAIC, MMI for residuals, CI, and cluster composition were given in 

Table 3. Table 3 indicates that the model with the hyperprior IG(0.5;0.0005) (M15) has 

the lowest DIC and WAIC values. Additionally, the model with the hyperprior 

IG(1;0.1) (M12) exhibits a residual MMI value closest to zero. Although the DIC and 

WAIC values for M15 and M12 are relatively similar, the MMI residual value for M12 

is smaller than that of M15. Consequently, the M12 model is more suitable than M15. 

The number of regions in each cluster (G1, G2, G3, G4, and G5) remains the same 

across different hyperpriors. It is worth noting that covariates such as the proportion of 

the poor population and poor nutrition show a positive and significant relationship with 

the risk of stunting, while complete basic immunization exhibits a negative and 

significant relationship with the risk of stunting. 

 

Table 3. DIC, WAIC, MMI for residuals, CI and cluster composition for CAR Lo-

calised model with G=5. 

Hyperpriors Model 

Co-

vari-

ate 

DIC WAIC 

MMI 

resid-

ual 

Credible Interval Cluster Composition 

2.5% 97.5% G1 G2 G3 G4 G5 

IG (1;0.01) M11 

X1 

373.84 378.32 -0.73 

0.014 0.015 2 4 5 9 4 

X2 0.041 0.043 

X3 -0.148 -0.146 

IG (1;0.1) M12 

X1 

371.90 374.79 -0.24 

0.013 0.014 2 4 5 9 4 

X2 0.042 0.043 

X3 -0.146 -0.146 

IG (0.1;0.1) M13 

X1 

374.22 380.00 -0.67 

0.010 0.014 2 4 5 9 4 

X2 0.042 0.045 

X3 -0.148 -0.146 

IG (0.5;0.5) M14 

X1 

371.92 374.41 -0.28 

0.014 0.017 2 4 5 9 4 

X2 0.042 0.045 

X3 -0.149 -0.146 

IG 

(0. 5;0.0005) 
M15 

X1 

371.08 373.50 -0.82 
0.014 0.016 2 4 5 9 4 

X2 0.037 0.042 

X3  -0.146  -0.141  

Based on all the model selection criteria used in this study, the Bayesian Spatial 

Localized CAR model with a hyperprior of IG(1;0.01) and G=2 (M1) is the preferred 

choice for estimating the relative risk of stunting in South Sulawesi province. Based on 

the best model, it is concluded that the number of people living in poverty (X1) and the 

number of malnourished children (X2) are positively correlated with the risk of stunting, 
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while the number of children with complete basic immunizations (X3) is negatively 

correlated with the risk of stunting. The estimated RR values for each district using the 

preferred model can be found in Table 4 and Figure 2.  

 

Table 4. The estimated RR values for each district using the preferred model  

 

 

 
Fig 2. Thematic Map of RR using Bayesian spasial CAR Localized Model with G=2  
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ID Districs RR ID Districst RR 

1 Barru 0.95 13 Pangkep 1.19 

2 Bone 1.23 14 Pare-Pare 0.89 

3 Bulukumba 1.11 15 Pinrang 0.88 

4 Enrekang 1.15 16 Selayar 1.00 

5 Gowa 1.19 17 Sidrap 0.92 

6 Jeneponto 1.37 18 Sinjai 1.09 

7 Luwu Timur 0.72 19 Soppeng 0.92 

8 Luwu Utara 0.70 20 Takalar 1.25 

9 Luwu 0.82 21 Toraja Utara 1.18 

10 Makassar 0.68 22 Toraja 1.05 

11 Maros 1.35 23 Wajo 0.81 

12 Palopo 1.03 24 Bantaeng 0.81 
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According to Table 4 and Figure 2, Jeneponto district has the highest RR, followed by 

Maros district and Takalar. Conversely, Makassar City has the lowest RR, followed by 

North Luwu district and East Luwu. Approximately 54.17% of districts within South 

Sulawesi Province experienced the impact of stunting. 

 

Conclusions 
The preferred model for assessing the RR of stunting in South Sulawesi province in 

2021 is the Bayesian Spatial CAR model with a hyperprior IG(1;0.01) with G=2, which 

incorporates all three variables. There was a positive correlation between the number 

of people living in poverty and the number of malnourished children with the risk of 

stunting. Conversely, the risk of stunting was inversely associated with the number of 

children who had received all their baseline immunizations. Stunting was observed in 

approximately 54.17% of districts in South Sulawesi Province, with Jeneponto having 

the highest RR of stunting (RR=1.37) and Makassar having the lowest RR (RR=0.68) 

among the districts.  
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