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Abstract. Spatial modeling can identify locations with high or low risk of disease 

effect, but it cannot explain the temporal shift in risk, which may be as relevant 

or more important. As a result, mapping modeling should consider both geo-

graphical and temporal components. Some research has utilized Bayesian Spatio-

Temporal Conditional Autoregressive (BST CAR) models. However, no research 

has been conducted on using BST CAR Localized model for poverty on Sulawesi 

Island, Indonesia. This research aims to find the best BST CAR localized model 

for poverty in 81 regencies/cities on Sulawesi Island. The BST CAR localized 

model with different number of clusters G=2, G=3, and G=5 was used to model 

the relative risk (RR) of poverty in each of 81 regencies and cities. The results 

suggest that BST CAR Localized with G=2 is the best model for modeling the 

relative risk of poverty on Sulawesi Island. Variables such as Gender Develop-

ment Index (IPG), Women's Income Contribution (SPP), Adjusted Per Capita 

Expenditure (PKD), and Human Development Index (IPM) have a significant 

impact on poverty. SPP has a positive influence on poverty, while the other three 

components have a negative impact. 

Keywords: Bayesian Spatio-temporal Localized model, Relative risk, Sulawesi 

Island Poverty. 

1 Introduction 

Spatial data are classified into three types based on the types of data: area data (lattice 

data), geostatistical data, and point patterns [1–3]. Spatial models are frequently used 

in a variety of fields [4]. The Conditional Autoregressive (CAR) spatial Bayesian model 

is a mapping approach that takes into consideration the spatial interaction among small 

geographic areas within a region and incorporates the smoothing of relative risk (RR) 

estimates to produce more accurate RR estimations [5]. The Intrinsic CAR (ICAR), 

Besag-York-Molli (BYM), Localised, and Leroux models are among the spatial Bayes-

ian CAR models [6]. The presence of spatial autocorrelation is the cornerstone of spatial 

analysis. 

Spatial autocorrelation is the correlation between a variable and itself based on space 

or as a measure of similarity across objects in space. There is spatial autocorrelation 

when there is a systematic pattern in the distribution of a quantity. According to spatial  
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autocorrelation, attribute values in certain places are connected to attribute values in 

neighboring regions [7]. Positive spatial autocorrelation and negative spatial autocor-

relation are two potential outputs of autocorrelated data. Positive spatial autocorrelation 

suggests that close places with comparable values cluster together, whereas negative 

spatial autocorrelation implies that nearby locations with differing values disperse [8]. 

Several spatial models, including the empirical Bayes method and the full Bayesian 

GLMM, have been developed and adapted to poverty data. Roberto Benavent and Do-

mingo Morales investigated bivariate target variables  [9], particularly poverty propor-

tions and gaps, which are affected by age, education, citizenship, and work position 

characteristics. Tomas Hobza, Yolanda Marhuenda Garca, and Domingo Morales Gon-

zález researched average earnings and poverty proportions [10]. 

Spatial modeling that includes spatial components can identify areas at high or low 

risk of disease impact. Still, it cannot explain the temporal change of risk, which may 

be as essential or more important. As a result, the involvement of both spatial and tem-

poral components (spatio-temporal modeling) in mapping modeling must be consid-

ered. Using Bayesian methods can facilitate determining additional information, such 

as spatial and temporal structures, through prior distributions. 

A Generalized Linear Mixed Model (GLMM) formulation can be applied in a Bayes-

ian spatio-temporal CAR)model for integrating spatial and temporal dependencies in 

the data. The CAR model is a common technique for modeling geographical data in 

which an observation's value is determined by the values of neighboring observations 

[11]. The spatio-temporal CAR model can represent the combined variation in space 

and time by expanding this approach to add temporal dependencies [12]. 

A GLMM with spatial random effects for spatio-temporal data was implemented to 

develop disease maps using data on dengue fever incidence, with the response variable 

assumed to follow a Poisson distribution [13]. 

Bayesian Spatio-Temporal Conditional Autoregressive (BST CAR) models have 

been used in several studies. Three BST CAR models have been compared: the ST 

CAR localized model [14], which allows for the separation of regions into various 

groups, the ST CAR ANOVA model [15], and the ST CAR autoregressive (AR) model 

[16]. Their study will compare smoking rates among moms with and without confound-

ers. There has also been research on BST CAR on DHF cases in Makassar with different 

priors [17–21], BST on TB cases in India [22], BST for Malaria in Rwanda [23], BST 

Graph for forecasting congestion [24], and BST for the ambient illness [25]. 

Other research used the BST CAR model applied to influential factors for Makassar 

DHF cases [20], TB in Makassar [26], and BST CAR localized for Makassar DHF 

cases. Based on the literature study, research that applies BST CAR Localized for pov-

erty in Sulawesi Island, Indonesia, has not been carried out. This study aims to obtain 

the most appropriate BST CAR localized model for poverty in 81 regencies/cities on 

Sulawesi Island. 
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2 Methods 

2.1 Study Area 

Sulawesi Island has six provinces, 81 regencies, and cities. Those provinces are North 

Sulawesi, Central Sulawesi, South Sulawesi, Southeast Sulawesi, Gorontalo, and West 

Sulawesi. The North Sulawesi Province has 15 regencies or cities, the Central Sulawesi 

Province has 13 regencies or cities, the South Sulawesi Province has 24 regencies or 

cities, the Northern Sulawesi Province has 17 regencies or cities, Gorontalo Province 

has six regencies or cities, and West Sulawesi Province has six regencies or cities. 

 

2.2 Data 

The annual poverty cases in every six provinces with 81 regencies/cities were obtained 

from the online annual report of the Central Bureau of Statistics (BPS) from 2007 to 

2022 by https://bps.go.id. The number of the population was also used to calculate the 

expected value of dengue fever cases. 

 

2.3 Spatial Dependence 

Moran’s I Testing. Moran's Index (MI) is the most comprehensive indicator to assess 

the degree of spatial autocorrelation in ordinal or interval data (Blangiardo & Cameletti, 

2015; MORAN, 1950). MI is calculated as the spatial covariation to total variation ratio. 

Moran's I values range between -1 and +1. The positive number represents positive 

spatial reliance, the negative value represents negative spatial dependence, and the 0 

value represents no spatial dependence. 

Moran's I statistics (Blangiardo & Cameletti, 2015) are formulated as follows:  

𝐼 =
𝑛 ∑ ∑ 𝜔𝑖𝑗(𝑌𝑖 − �̅�)(𝑌𝑗 − �̅�)𝑛

𝑗=1
𝑛
𝑖=1

∑ ∑ 𝜔𝑖𝑗(𝑌𝑖 − �̅�)2𝑛
𝑗=1

𝑛
𝑖=1

 

𝑛 denotes the number of locations, 𝑌𝑖 and 𝑌𝑗 are the observed values in position i and 

another place, respectively. 𝜔𝑖𝑗 is the spatial connectivity/weight matrix, j, �̅� is the 

average of all the Y values over the n locations. 

The binary spatial matrix using a first-order adjacency weight matrix is the most com-

mon for areal data, and it is defined (Carrijo & da Silva, 2017) as follows: 

𝜔𝑖𝑗 = {
1 if the areas 𝑖 and 𝑗 share a boundary

0         otherwise                                                
 

There are three distinct forms of spatial adjacency matrix: queen contiguity, rook con-

tiguity, and bishop contiguity. Queen contiguity is implemented in this study as it can 

improve the model fit.. 

Relative Risk. The Standardised Incidence Ratio (SIR) is calculated by dividing the 

number of poverty (𝑌𝑖) cases with the number of expected cases in each area (𝐸𝑖). The 

expected number of poverty cases is here calculated as the overall population for the 
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entire Sulawesi Island Regency and City multiplied by the population at risk in each 

location (𝑝𝑜𝑝𝑖) and it is given as follows: 

𝐸𝑖 =
∑ 𝑌𝑖𝑖

∑ 𝑝𝑜𝑝𝑖𝑖

𝑝𝑜𝑝𝑖 

Usually, this would be calculated by age groups and summed together, but data by age 

were unavailable. 

In estimating the relative risk (RR) across small areas, Bayesian methods such as 

Bayesian hierarchical models are preferred over raw SIRs as they can incorporate in-

formation from neighboring locations through prior distributions and adjust for covari-

ates in the model. 

 

 

2.4 Model Formulation 

BST CAR localized model with G=2, G=3, and G=5 was used to model poverty's rela-

tive risk (RR) in every 81 regencies and cities in Sulawesi Island, Indonesia (Lee & 

Sarran, 2015). The number of poverty is assumed to be the Poisson distribution (Aswi 

& Sukarna, 2020; Lee & Sarran, 2015). The model can be written as follows: 

𝑦𝑖𝑗 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐸𝑖𝑗𝜃𝑖𝑗) 

𝐸𝑖𝑗 =
∑ ∑ 𝑦𝑖𝑗𝑗𝑖

∑ ∑ 𝑛𝑖𝑗𝑗𝑖
𝑛𝑖𝑗 

𝑙𝑜𝑔(𝜃𝑖𝑗) = 𝛼 + 𝜑𝑖𝑗 + 𝜆𝑧𝑖𝑗
  

where 

𝑦𝑖𝑗 is the number of poverty in each area i = 1, 2, …, 81 and the time j = 1, 2, …, 6. 

𝐸𝑖𝑗  is the expected value calculated as the overall incidence rate for each case in each 

area i = 1, 2, …, 81 and the time j = 1, 2,…, 6 multiplied by the population at risk 

in each area. 

𝑛𝑖𝑗 is the total population in the i-th province (i = 1, 2, …, 81) and the j-th time (j = 1, 

2,…, 6). 

𝜃𝑖𝑗 is the relative risk in the i-th area (i = 1, 2, …, 81) and the j-th time (j = 1, 2,…, 6). 

𝜑𝑖𝑗 and 𝜆𝑧𝑖𝑗
 are smoothing components: 𝜑𝑖𝑗 are spatial and temporal autocorrelation 

variations, while 𝜆𝑧𝑖𝑗
 are clustering or constant intercept components. 

𝜑𝑖𝑗 is a structured spatial random effect to be modeled with prior CAR as follows: 

 

(𝜑𝑗|𝜑𝑗−1) ∼ 𝑁(𝜌𝑗𝜑𝑗−1, 𝜏2𝑄(𝑊)−1), 𝑗 = 2, … ,6 

𝜑1 ∼ 𝑁(0, 𝜏2𝑄(𝑊)−1) 

 

where 

𝜌𝑗 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 
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Hyperprior on the variance component 𝜏2 Inverse-Gamma IG (1, 0.01) was used as the 

default hyperprior in the CARBayesST package. 

𝜆𝑘 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝜆𝑘−1, 𝜆𝑘+1); 𝑘 = 1,2, … , 𝐺  

𝑓(𝑧𝑖𝑗|𝑧𝑖,𝑗−1) =
exp(−𝛿[(𝑧𝑖𝑗−𝑧𝑖,𝑗−1)

2
+(𝑧𝑖𝑗−𝐺∗)

2
])

∑ exp(−𝛿[(𝑙−𝑧𝑖,𝑗−2)
2

+(𝑙−𝐺∗)2])𝑙

; 

𝑗 = 2,3, … ,8  

𝑓(𝑧𝑖1) =
exp(−𝛿[(𝑧11−𝐺∗)2])

∑ exp (−𝛿(𝑙−𝐺∗)2)𝑙
  

where 𝛿 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(1,10) and δ is the penalty parameter. 

The value of G is usually determined by choosing a small and odd G (Lee & Lawson, 

2016). The CARBayesST package version 3.3 (Lee et al., 2018) with R 4.3.2 is used in 

analyzing data. Selection of the best model is based on DIC, WAIC, and parsimony 

values by considering the number of regions included in a group. 

3 Results and Discussion 

3.1 Results 

This study is conducted on the island of Sulawesi, divided into six provinces. These six 

provinces each have a different number of districts or cities, totaling 81 districts and 

cities on the island of Sulawesi. The number of people living in poverty in these 81 

districts and cities from 2017 to 2022 is the response data for this study. 

Figure 1 depicts the impoverished people in each district/city over six years. The 

number of impoverished people does not appear to fluctuate significantly from year to 

year (Figure 1). The number of locations (districts or cities) with more than 40,000 

impoverished people is substantially lower than those below it. Every year, about 

2,042,812 people live in poverty, with an average of 25,220 people in each area ranging 

from 4,300 to 83,660. 
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Fig. 1. The number of poor population per district/city from 2017 to 2022. 

According to Figure 1, the Parigi Moutong District (ID=45) in Central Sulawesi had 

the largest number of impoverished people in 2017, 2018, and 2019, with counts of 

82,880, 83,660, and 81,360. Furthermore, Bone District (ID=15) in South Sulawesi had 

the largest number of impoverished people in 2020, 2021, and 2022, with 81,330, 

79,640, and 80,340, respectively. Bolaang Mongondow Timur District (ID=70) in 

North Sulawesi, on the other hand, has the fewest impoverished people, with 4,370, 

4,300, 4,410, 4,300, 4,470, and 4,320 in 2017, 2018, 2019, 2020, 2021, and 2022, re-

spectively. 

 

3.2 Discussion 

Compared to the models with G = 3 and G = 5, the Localised CAR model with G = 2 

(Table 1) has the lowest DIC value of 6698.49 and the lowest WAIC value of 6555.55. 

Table 1. CAR Localized G = 2, 3, dan 5 dilengkapi covariate, CI, DIC, WAIC 

Model Covariate 
Credible Interval 

DIC WAIC 
2.5% 97.5% 

CAR Localized 

G =2 

IPG -0.0268 -0.0261 

6698.49 6555.55 
SPP 0.0139 0.0145 

PKD -0.1189 -0.1173 

IPM -0.1290 -0.1278 

CAR Localized 

G =3 

IPG -0.0261 -0.0248 

6708.41 6572.71 
SPP 0.0132 0.0139 

PKD -0.1196 -0.1180 

IPM -0.1291 -0.1275 

CAR Localized 

G =5 

IPG -0.0261 -0.0242 

6800.59 6746.32 
SPP 0.0135 0.0139 

PKD -0.1205 -0.1183 

IPM -0.1291 -0.1265 

 

 

The Bayesian Spatio-Temporal Conditional Autoregressive Localised model with G = 

2 was employed to develop the poverty data model. 

The Localised model with G = 2 (Table 1) shows that all variables significantly im-

pact poverty. Covariates IPG, PKD, and IPM have a negative impact, and SPP posi-

tively affects poverty. 

The Localised Structure (LS) and Relative Risk (RR) values for poverty cases in 

Sulawesi Island from 2017 to 2022 are given in Table 2. 

Table 2. LS and RR values for each regency/city every year (2017–2022). 

ID KabKot 
2017 2018 2019 2020 2021 2022 

LS RR LS RR LS RR LS RR LS RR LS RR 

1 Boalemo 2 1.97 2 1.9 2 1.83 2 2.18 2 2.12 2 2.17 

2 Bone Bolango 2 1.61 2 1.63 2 1.57 2 1.59 2 1.54 2 1.54 
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ID KabKot 
2017 2018 2019 2020 2021 2022 

LS RR LS RR LS RR LS RR LS RR LS RR 

3 Gorontalo 2 1.86 2 1.87 2 1.77 2 1.7 2 1.67 2 1.68 

4 Gorontalo Utara 2 1.74 2 1.74 2 1.65 2 1.57 2 1.5 2 1.52 

5 Kota Gorontalo 1 0.51 1 0.52 1 0.53 1 0.63 1 0.64 1 0.63 

6 Pohuwato 2 1.92 2 1.82 2 1.77 2 1.98 2 1.94 2 1.98 

7 Majene 2 1.26 2 1.29 2 1.34 2 1.39 2 1.39 2 1.51 

8 Mamasa 1 1.22 1 1.25 2 1.31 2 1.34 2 1.33 2 1.43 

9 Mamuju 1 0.62 1 0.67 1 0.69 1 0.74 1 0.78 1 0.82 

10 
Mamuju Ten-

gah 
1 0.63 1 0.67 1 0.67 1 0.69 1 0.69 1 0.72 

11 Mamuju Utara 1 0.44 1 0.42 1 0.42 1 0.42 1 0.43 1 0.47 

12 
Polewali Man-

dar 
2 1.45 2 1.5 2 1.52 2 1.43 2 1.4 2 1.5 

13 Bantaeng 1 0.88 1 0.87 1 0.88 1 0.86 2 0.88 1 0.87 

14 Barru 1 0.88 1 0.85 2 0.84 1 0.78 1 0.8 2 0.8 

15 Bone 1 0.93 1 1 1 0.99 1 1.02 1 0.97 1 1 

16 Bulukumba 1 0.72 1 0.71 1 0.71 1 0.69 1 0.7 1 0.71 

17 Enrekang 2 1.19 2 1.17 2 1.2 2 1.12 2 1.13 2 1.14 

18 Gowa 1 0.77 1 0.74 1 0.75 1 0.76 1 0.74 1 0.75 

19 Jeneponto 2 1.39 2 1.46 2 1.45 2 1.33 2 1.27 2 1.24 

20 
Kepulauan Se-

layar 
1 1.21 1 1.24 2 1.27 2 1.25 2 1.2 2 1.21 

21 Luwu 2 1.26 2 1.25 2 1.24 2 1.26 2 1.23 2 1.27 

22 Luwu Timur 1 0.7 1 0.69 1 0.69 1 0.7 1 0.68 1 0.69 

23 Luwu Utara 2 1.3 2 1.29 2 1.33 2 1.31 2 1.3 2 1.3 

24 Makasar 1 0.42 1 0.41 1 0.42 2 0.49 2 0.51 2 0.51 

25 Maros 1 1.01 2 0.97 2 0.97 2 0.89 1 0.84 1 0.85 

26 Palopo 2 0.8 2 0.75 2 0.78 2 0.8 2 0.8 2 0.78 

27 
Pangkajene Dan 

Kepulauan 
2 1.47 2 1.42 2 1.38 2 1.37 2 1.36 2 1.36 

28 Parepare 1 0.52 1 0.53 1 0.52 1 0.53 1 0.51 1 0.52 

29 Pinrang 1 0.77 1 0.83 2 0.83 2 0.83 1 0.81 2 0.82 

30 
Sidenreng Rap-

pang 
1 0.49 1 0.49 1 0.47 1 0.48 1 0.46 1 0.48 

31 Sinjai 1 0.84 1 0.87 1 0.9 1 0.85 1 0.81 1 0.83 

32 Soppeng 1 0.75 1 0.7 1 0.7 1 0.74 1 0.72 1 0.73 

33 Takalar 1 0.84 1 0.85 1 0.86 1 0.85 1 0.8 1 0.82 

34 Tana Toraja 1 1.14 1 1.19 1 1.2 1 1.02 1 1.01 1 1.01 

35 Toraja Utara 1 1.3 2 1.25 1 1.2 1 1.07 1 1.05 1 1.04 

36 Wajo 1 0.67 1 0.7 1 0.67 1 0.73 1 0.68 1 0.71 

37 Banggai 1 0.83 1 0.86 1 0.76 1 0.74 1 0.81 1 0.78 

38 
Banggai Kepu-

lauan 
2 1.44 2 1.47 2 1.45 2 1.41 1 1.31 2 1.32 

39 Banggai Laut 2 1.46 2 1.53 2 1.49 2 1.46 2 1.51 2 1.47 

40 Buol 2 1.5 2 1.51 2 1.48 2 1.39 2 1.57 2 1.52 

41 Donggala 2 1.65 2 1.7 2 1.8 2 1.74 2 1.66 2 1.66 

42 Morowali 2 1.31 2 1.34 2 1.34 2 1.34 2 1 2 0.86 

43 Morowali Utara 2 1.42 2 1.45 2 1.47 2 1.41 2 1.48 2 1.44 

44 Palu 2 0.61 2 0.62 2 0.67 2 0.68 2 0.74 2 0.72 

45 Parigi Moutong 2 1.59 2 1.63 2 1.62 2 1.58 2 1.7 2 1.72 

46 Poso 2 1.54 2 1.57 2 1.52 2 1.54 2 1.66 2 1.65 

47 Sigi 1 1.14 1 1.18 2 1.26 1 1.24 2 1.18 2 1.12 

48 Tojo Una-Una 2 1.64 2 1.72 2 1.67 2 1.64 2 1.52 2 1.5 

49 Toli-Toli 1 1.2 1 1.28 1 1.28 1 1.29 2 1.39 2 1.37 

50 Bau-Bau 1 0.76 1 0.71 1 0.71 1 0.71 2 0.81 1 0.79 

51 Bombana 1 1.11 1 1.03 1 1.03 1 1 1 1.27 2 1.29 

52 Buton 1 1.21 1 1.28 1 1.33 1 1.32 1 1.19 1 1.14 

53 Buton Selatan 1 1.45 1 1.4 1 1.43 1 1.41 1 1.2 1 1.18 
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ID KabKot 
2017 2018 2019 2020 2021 2022 

LS RR LS RR LS RR LS RR LS RR LS RR 

54 Buton Tengah 2 1.67 1 1.4 2 1.54 2 1.53 1 1.24 1 1.15 

55 Buton Utara 2 1.41 2 1.4 2 1.4 2 1.41 2 1.37 2 1.33 

56 Kendari 1 0.45 1 0.44 1 0.43 1 0.43 2 0.54 2 0.54 

57 Kolaka 2 0.96 2 0.91 2 0.9 2 0.9 2 1.36 2 1.32 

58 Kolaka Timur 2 2.04 2 1.87 2 1.93 2 1.95 2 1.63 2 1.61 

59 Kolaka Utara 2 1.47 2 1.34 2 1.28 2 1.3 2 1.5 2 1.49 

60 Konawe 2 1.41 2 1.26 2 1.2 2 1.22 2 1.22 2 1.21 

61 
Konawe Kepu-

lauan 
1 1.63 1 1.64 2 1.68 2 1.7 2 1.56 2 1.42 

62 Konawe Selatan 1 1.01 1 1.03 1 1.05 1 1.08 1 1.13 2 1.14 

63 Konawe Utara 2 1.26 2 1.33 2 1.33 2 1.35 2 1.32 2 1.28 

64 Muna 2 1.34 2 1.24 2 1.24 2 1.27 2 1.37 2 1.39 

65 Muna Barat 1 1.47 1 1.33 2 1.38 2 1.37 2 1.34 2 1.35 

66 Wakatobi 2 1.47 2 1.4 2 1.44 2 1.44 2 1.33 2 1.3 

67 Bitung 1 0.6 1 0.63 1 0.63 1 0.63 1 0.62 1 0.61 

68 
Bolaang Mon-

gondow 
1 0.72 1 0.71 1 0.72 1 0.73 1 0.75 1 0.72 

69 
Bolaang Mon-

gondow Selatan 
2 1.28 2 1.28 2 1.3 1 1.22 1 1.2 1 1.14 

70 
Bolaang Mon-

gondow Timur 
1 0.56 1 0.57 1 0.59 1 0.49 1 0.49 1 0.47 

71 
Bolaang Mon-

gondow Utara 
1 0.8 1 0.81 1 0.82 1 0.82 1 0.77 1 0.72 

72 
Kepulauan 

Sangihe 
2 1.07 2 1.11 2 1.09 2 1.05 2 1.02 2 1 

73 
Kepulauan Ta-

laud 
1 0.88 1 0.89 1 0.96 1 0.94 1 0.86 1 0.81 

74 Kotamobagu 1 0.53 1 0.56 1 0.56 1 0.57 1 0.6 1 0.56 

75 Manado 1 0.49 1 0.51 1 0.54 1 0.57 2 0.58 1 0.56 

76 Minahasa 1 0.71 1 0.68 1 0.7 2 0.72 2 0.74 1 0.7 

77 
Minahasa Se-

latan 
1 0.88 1 0.88 2 0.91 1 0.82 1 0.81 1 0.8 

78 
Minahasa 

Tenggara 
2 1.34 2 1.31 2 1.3 2 1.18 2 1.11 2 1.08 

79 Minahasa Utara 1 0.67 1 0.66 1 0.68 1 0.64 1 0.63 1 0.59 

80 

Siau 

Tagulandang 

Biaro 

1 0.94 1 0.93 1 0.94 1 0.83 1 0.82 1 0.77 

81 Tomohon 1 0.58 1 0.56 1 0.55 1 0.6 1 0.6 1 0.58 

Table 2 illustrates the position of each district or city in terms of its LS (localized struc-

ture) and RR (relative risk) values. Both values are essential for evaluating the relative 

risk associated with particular poverty circumstances and studying the grouping of dis-

tricts/cities. Table 3 depicts the number of districts or cities based on their LS values 

for each year. 

Table 3. The number of areas for each LS from 2017 to 2022. 

Localized Structure 2017 2018 2019 2020 2021 2022 

LS = 1 46 45 37 39 37 36 

LS = 2 35 36 44 42 44 45 
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Table 3 depicts the number of districts or cities established as LS = 1 or LS = 2 for each 

year (2017–2022). Figure 2, however, displays the trend or pattern of changes in the 

number of areas each year for LS=1 and LS=2. 

 

Fig. 2. Trend localized structure from 2017 to 2022. 

Figure 3 depicts that the number of areas in LS = 2 from 2017 to 2022 increases, 

whereas LS = 1 decreases. It means that areas with a high risk of poverty increase from 

time to time. 

 

46 45
37 39 37 3635 36
44 42 44 45

2017 2018 2019 2020 2021 2022

Localized Structure

LS = 1 LS = 2

Modeling and Mapping on Bayesian Spatio-Temporal CAR             193



Fig. 3. LS per kabupaten/kota dari 2017 sampai 2022. 

Furthermore, Figure 3 shows that red areas reflect places with a higher relative risk (LS 

= 2), and green areas (LS = 1) have a reduced risk. 

 

Fig. 4. Value of RR for each area from 2017 to 2022. 

Figure 4 illustrates that the number of regions with high RR values is greater than that 

of locations with low RR values (less than 1). 

According to Figure 4 and Table 2, most areas in Group 1 belong to areas in the 

provinces of South Sulawesi, West Sulawesi, and North Sulawesi. As a result, areas 

with low relative risk values are dispersed over South Sulawesi, West Sulawesi, and 

North Sulawesi. Areas in Southeast Sulawesi, Central Sulawesi, and Gorontalo prov-

inces have high relative risk values from 2017 to 2022. 

In 2020, the district of Boalemo had the greatest relative risk rating (RR=2.18) 

4 Conclusion 

This study concludes that the covariates of the Gender Development Index (IPG), 

Women's Income Contribution (SPP), Adjusted Per Capita Expenditure (PKD), and 

Human Development Index (IPM) have a significant influence on the poverty level in 
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each regency/city throughout Sulawesi Island. SPP positively influences poverty, while 

the other three components have a negative impact. 

Based on the DIC and WAIC values, the Bayesian Spatio-Temporal Conditional 

Autoregressive Localized model with G = 2 outperforms the models with G = 3 and G 

= 5. 

From 2017 to 2022, the trend of LS = 2 (high-risk group) indicates a rising tendency. 
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