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Abstract. Anomaly detection by tracking if the context of a video
stream has changed could be useful, but supervised training to classify
video context can be cumbersome and error prone. Instead, we apply
a cascade of clustering techniques that operate on a weakly supervised
video data lake to extract a context representation of a video sequence.
We then train a bi-directional LSTM model to mimic the functionality of
the cascade and predict a context representation from video. Additional
experiments have shown that if the context is fed as an additional input
to a legacy Video Question Answering solution, loss improves by more
than 20% relative to it’s baseline after training over 120 epochs, which is
significant as current state of the art accuracy for VideoQA solutions is
close to 50%. This report is also a demonstration of how to chart a path
to freedom from the requirement to explicitly label data, while preserving
semantics.
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1 Introduction

Video stream monitoring relies on a large number of intermediate devices that
run many processes [1]. A real time implementation that pushes processing to the
edge tries to selectively extract interesting events[2], and then apply additional
processing to those events or anomalies. Anomaly detection in video streams is
therefore interesting, but is a computationally hard problem[3]. Current methods
require significant compute or memory resources over a long period of time. We
propose an anomaly detection solution that requires significantly less resources,
by classifying the context of the video stream, to which we will refer as the
mood, and then simply reporting if the mood has changed. An example of a
mood change is if a video stream shows persons sitting and reading, then later
shows persons suddenly running. As there is no known dataset that collates video
moods, this work relies on a combination of unsupervised techniques to cluster
similar videos, (so each cluster is then considered a mood). We then train a CNN
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based model to mimic the mood generation and assess the matching distribu-
tions using the MSRVTT-QA dataset[4]. Further work has demonstrated that if
the mood is used as an additional input to a VideoQA system[4], it’s accuracy
improves, as supported by subset distillation theory[5–7]. Given that each mood
is simply a representation of videos which are similar in high dimensional space,
it’s human readable label is a summarized aggregate of the labels of the video
files included in the cluster. As such, examples of labels are

1. Who jumps off a roof to talk as they fly through air

2. What model competition where beauty girl walking

3. Who handshakes a commando and handles a revolver

The rest of this work is organized as follows: Section 2 presents supporting
work, with the method presented in section 3. Experiment setup and results are
described in sections 4 and 5. Section 6 presents a discussion, with future work
and a conclusion given in sections 7 and 8.

2 Supporting Work

Phenomenal improvements in the classification of environmental patterns have
been achieved over the past two decades. Some tasks remain challenging however,
such as video anomaly detection [3] as the events sought represent outliers that
may occur infrequently, or not, over extended periods of monitoring. Recently
proposed solutions such as building and managing a context graph[8], which
could become memory intesive, posing the problem as a gaussian expectation-
maximization issue[9], which increases computation, or tracking trajectories[10]
are likely to cost resources. The expense will be compounded in a long running
surveillance application, and is a motivator for this work.

Public release of datasets like Imagenet[11] and the corresponding avail-
ability of high performance computing devices spawned a race for top classi-
fication performance in multiple domains. AlexNet’s victory[12] a decade ago,
using a supervised learning technique that applied a convolutional neural net-
work, signalled that the time was ripe for machine learning to leap from the
pages of publications into live applications. Unsurprisingly, the next few years
witnessed further ground-breaking performances by models like VGG[13], In-
ception[14] and Resnet[15]. For a short time after, data classification in more
complex formats like video, audio and time sequences proved a worthy chal-
lenge, until techniques like RNNs[16] and LSTMs[17] became commonplace,
along with the attention[18] strategies that drive transformers. Currently, trans-
former powered language summarization models like BERT[19] are readily avail-
able, giving developers options for application integration. As an example while
the pegasus/x-sum model[20] achieves state of the art performance, licens-
ing concerns may indicate that a less accurate, but more available model like
pegasus/cnn-daily-mail could be fit for purpose.
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Automating question answering over videos (VideoQA), is another currently
challenging task, as the accuracy of cutting edge solutions is below 50%[22, 23]
The Video Question Answering task is an indirect descendant of the Question
Answering challenges[21]. A commonly implemented solution is trained by em-
bedding questions from the training set, or relationships in a knowledge base,
into a latent space, and associating answers with each embedding[24, 25]. At
inference time an embedding is generated for a posed question, so when an em-
bedding close to it in the latent dimension is found, the corresponding answer
returned. A direct decendant of the Question Answering task is the Visual Ques-
tion Answering task[26], which provides answers to questions, each of which is
based on a still image. Many solutions fuse encoded representations of a question
and an associated image during training[27], where encodings often incorporate
other components like LSTMs. The LSTM -Stacked Attention[28] strategy takes
this solution further by stacking an attention network to allow the first attention
layer to highlight an area of the image under review, so that a second attention
layer can further process the highlighted area. VideoQA[4] adds an additional
dimension to the challenge in that answers are predicted for questions about
a video sequence. Approaches include extending the approach applied in static
VQA by fusing the encoded representations of video and text while applying
transformer based techniques [29], and it has been shown that static frame anal-
ysis allows good performance on VideoQA[23].

Solutions to the Question Answering family of challenges often apply super-
vised learning strategies, where the samples are questions and the labels are an-
swers. Samples and labels are often generated either through human labelling or
via tools that generate questions by assessing statistical distribution in text[30].
As an example, the MSRVTT-QA questions were generated by running the sta-
tistical tool over the MSR-VTT video captioning database. Accuracy metrics
describe the ratio of correct responses to multiple choice or ended questions[21].
Deployments that fine-tune classifications are common in the supervised learning
community, and in the QA family, specific domain solutions have been created
by curating training sets[31].

Common components of QA solutions include LSTMs or transformer net-
works that were built over the classification capability of simple neural network
connected units. Final layers generally perform a softmax process that converts
the value of a logit zx at an output x to a probability px, given by

px =
exp(zx/T )∑
y exp(zy/T )

(1)

T is a temperature that can be used to adjust the contrast between softmax
probabilities. Classic knowledge distillation[5] exploits that capability by ex-
tracting information on the ratios between non-maximal logits, which express
better at suitably high temperatures, in order to train simpler models. Further
work clarified that if the number of classes is small, probability distributions
between artificially generated subclasses on a teacher model can provide useful
additional information to a student model[6]. The additional information
can be expressed in bits[7].
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The video question answering task associates high dimensional samples (videos
and questions) and low dimensional labels (answers). Supervised strategies give
rise to the possibility that samples could be associated with more than one la-
bel, or are improperly labelled[32, 33]. Unsupervised learning therefore has an
opportunity to shine, with the capability to reduce the sample dimension or
identify clusters. Cluster members can be subsequently labelled. Available tech-
niques include k-means[34] clustering, which segments a set into k groups based
on distance to group centers, DBSCAN [35]clustering, which identifies groups
that contain at least a specified number of members within a specified distance,
and principal component analysis[36] to find the most significant components
in a set. Student-t distributed stochastic neighbour embedding[37] (t-SNE) is
a technique that was first applied to the visualize high dimensional data in
lower, human readable dimensions by minimizing the Kullback-Leibler(KL) di-
vergence between high dimensional data points and the low dimensional rep-
resentations. It resolves the crowding problem experienced in vanilla SNE by
applying a Student-t distribution so that the associated inverse square law gen-
erates larger distances. The loss minimization function manifests as forces in the
lower dimension that attract similar samples, and repel dissimilar ones. Opti-
mizations to enhance convergence include early exaggeration in the first stage,
so visualizations normally appear to start with a ”big bang” effect, followed by
more conservative adjustments that coalesce clusters. The authors warn that ap-
propriate parameterization is important to guarantee convergence, and that the
behaviour is not guaranteed for all destination dimensions. Useful parameters
to observe are the early exaggeration factor, and a perplexity that dictates the
number of items that can be in a cluster. t-SNE is a useful tool in a clustering
toolkit, as it’s application often results in a clearer expression of clusters in the
target dimension, which can inform the configuration of other techniques like
k-means or DBSCAN.

3 Mood Based Learning

Supervised learning approaches remain useful for semantic correspondence but
are necessarily limited by a requirement to segment data when training before
knowing a full distribution of the data to be encountered by deployed models.
Unsupervised learning allows good feature based segmentation of data, however
in order to attach semantic meaning, subsequent labelling is normally required.
Our hypothesis is that we can use unsupervised learning to distill large lakes of
weakly annotated data elements into coarse grained categories that each describe
the context of each data item. The extracted context should augment subsequent
classification, and we test the idea in the VideoQA domain.

3.1 Design

We test the hypothesis with experimentation, however the experiment requires
a method to extract relevant categories that does not depend on supervised
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Fig. 1. Architecture, showing (a) the pipeline for automated label generation, and (b)
internals of the clustering cascade used

segmentation. Our approach is to first reduce the dimension of the data to the
most significant components, where the number of components is determined
via the elbow technique, and then apply a cascade of clustering techniques to
our dataset. To mitigate the effect of the elapsed time for clustering, we then
trained a CNN model to mimic the output of the clustering set, and refer to the
newly trained model as the mood model.

Additional experiments were then carried out to explore applications of the
mood model. In particular, we assessed whether the context

3.2 Implementation

To validate the idea, we allow a set of coarse categorizations to emerge from the
MSRVTT-QA dataset, and then subsequently train a classification model (the
mood model) to accept a video stream and predict these classifications. We first
embed each training video into a clustering cascade. Question text associated
with each cluster member from first cascade is then summarized by cluster, and
embeddings of the summaries are passed into the second cascade. Text coming
out of the second cascade is futher summarized by cluster, and the those outputs
are reported as human readable moods. We associate each participating video
with it’s mood, and the association is used to train a LSTM based model.

An overview of the infrastructure is shown in Figure 1. The structure of the
LSTM-based model is shown in Figure 2.
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Fig. 2. Mood prediction model

A solution that intends to apply this technique for augmentation will be
updated to accept an additional mood input. In order to addess the impact on
the Stacked Attention LSTM network, we updated an implementation that was
made available. The interface is modeled in Figure 3.

4 Experiments

Required activities included data preparation, mood extraction, mood modelling
and mood deployment. We describe each of these in turn.

4.1 Data Preparation

MSRVTT-QA includes a training, validation and test set of questions and asso-
ciated answers that are related to the MSR-VTT dataset. We only had access to
videos in the training set however, so a decision was made to treat the training
set as the full set and split it into local training, validation and test sets in the
ratio 65:30:5.

For each video in the training set, a specified number of questions(default
3) are extracted for summarization. We then generate a representation for three
keyframes in each video, located at the centerpoint of the video, three seconds
after the beginning, and three seconds before the end. Each keyframe’s repre-
sentation consists of the penultimate weights predicted by an Inception model
pre-trained on Imagenet, and an appended sequence that is composed of com-
pressed background subtracted frames at 5 frames per second, three seconds
prior to, and after the keyframe. We then concatenate the sequence of keyframes
and background subtracted representations in reverse order. In order to reduce
dimesionality we apply run-length encoding on the resulting sequence, and then
prepad it with zero if shorter than 1000, or truncate the sequence at the begin-
ning if the sequence is longer than 1000. 1000 was an arbitrary number that was
in a similar ballpark as the size of the embedding created by the BERT sentence
module, ie, 768. The association between each video embedding and associated
text is maintained.

4.2 Mood Extraction

Two clustering cascades were applied to generate the classifications. Each cas-
cade consists of a PCA process, a t-SNE process, and a DBSCAN process. The
output from the first cascade is input into the second. For our experiment the
number of components extracted by the first PCA process is set to 20, based
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on a grid search. The result is then applied to a t-SNE process that executes
for 1000 iterations with a perplexity of 10. A grid search for the best distance
to identify groups of at least 5 members is then executed, and for each of those
groups, abstractive summarization is applied to the sentences associated with
group members.

For each summary, an embedding is generated using the BERT sentence
transformer model. The embedding is then fed into the second clustering cascade.
The second cascade starts with a PCA process that filters the 3 most significant
components A t-SNE process that expresses it’s data in two dimensions is then
applied for 3000 epochs, followed by a DBSCAN process that reports on groups
of at least two.

4.3 Mood Modelling

The model to predict moods consists of an initial convolution layer followed by
a max pooling layer, which then feeds into a two stacked LSTMs, the second of
which is bidirectional. We then feed signals into a fully connected layer, then a
dropout layer and a finally a softmax with the number of output classes set to
the number of groups emitted by the final DBSCAN process. Major components
of the model are shown in figure 3. For early training, the learning rateset to the
default of 0.01, and exponential rate decay is applied after 50 epochs.

4.4 Mood Deployment

The mood of the environment is first extracted as a prediction from the mood
module. Mood is then applied as an additional input to the SAN-LSTM network.

The experiment involved modifying a code base that implemented the LSTM
Stacked-attention model, to insert an additional input for the mood, then exe-
cuting training in both original and modified versions to assess differences.

5 Results.

A discussion of each assessible component in the pipeline is useful, given that
the process implements a cascade.

5.1 Clustering

After the embeddings are generated, the data is compressed to 20 components
using PCA. A visualization of the data represented with 1000 components as
well as 20 components is shown in Figure 4 (a) and (b) respectively.

After 1000 iterations of t-SNE, the visualization is shown in Figure 4(c). The
result of summarizing the group of questions that emerged from the first cluster
cascade was then embedded, and passed into a second cascade. Figure 4(d) is a
visualization of the result of second stage clustering.

Given approximately 12,000 data points, our experiments generated between
100 and 250 classes with a descriptive label.
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Fig. 3. Deployment Model

5.2 Model Training

It should be noted that the preferred summarization model to group the items in
the cluster was the pegasus/x-sum model, however given the number of times
the x-sum summarizer returned ”All images are copyrighted”, we were tempted
forego that model and work with pegasus/cnn-daily-mail. Results were how-
ever comparable.

Both models consistenly had an initial flat region for approximately 10 epochs
(the flat region was more pronounced for the cnn-dailymail generated classes)
after which the training rate increased and stabilized at approximately 99% by
epoch 80.

5.3 VideoQA Integration

We then modified the Stacked Attention LSTM model (SAN-LSTM) network
to incorporate a mood input, and trained versions that are tuned with both
the x-sum mood model(XSUM-MOOD-SL) as well as the cnn-dailymail mood
model(CNN-MOOD-SL). Figure 6 shows a comparison of average training losses
when comparing these models, from epoch 40 to epoch 120. Although the average
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Fig. 4. Progression of the clustering technique showing (a) raw embeddings in 1000
dimensions, (b) representation after reduced to 20 dimensions by PCA (c) t-SNE for
1000 iterations, (d) remapping of updated clusters

Fig. 5. Mood Model training accuracy over 140 epochs (Average of three experiments)

losses of the CNN mood model were higher for early iterations,it is possible that
could have been due to initializations. Eventually, however, the losses make it
clear that the augmented models outperform the vanilla models. Average results
on evaluations on our adjusted sample of MSVRTT-QA are presented in Table 1.
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Fig. 6. Loss training Naive SAN-LSTM vs with Mood Enhancement over 120 epochs

SAN-LSTM CNN-DMAIL-SL XSUM-SL

Accuracy 36% 39% 38%

Loss 0.61 0.55 0.47
Table 1:Average accuracy and loss from baseline and updated

models(Average over 10 experiments)

6 Discussion

Initial concerns that labels generated from the pegasus/x-sum model did not
match expected semantics were probably overestimated as the models appeared
to perform comparably. In retrospect, given that a machine has more considera-
tion for whether a cluster exists than the semantic significance, that was not sur-
prising. We note however, that despite the superior loss of the x-sum augmented
model during training, validation results show that the cnn-dailymail aug-
mented model yielded marginally superior performance in accuracy, but a clear
delineation in the behaviour when loss was assessed. Average loss of the vanilla
model without additional inputs centered around 61%. Average loss of the aug-
mented structure that performed better (after being trained on the pegasus/x-
sum model) was 47%, This translated to a spread of 0.14, evaluating to a 23%
improvement of the baseline.

Another point of discovery is that the early flat region while training the
LSTM based model was unexpexted. A small source of amusement is that in
the initial stages of model development we constantly interrupted training to
tune hyperparameters based on the impression that the model was not learning.
Our current hypotheses is that in the flat region, the model is learning how to
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learn to associate high dimensional data with a relativey complex output. Given
that no published theory has been encountered at the time of writing that fully
explains the phenomenon, we believe it could be fertile ground for future work.
We suspect that inspection of intermediate layer outputs could clarify the issue.

7 Future work

The anomaly detection strategy is to be evaluated on known anomaly detection
datasets to judge it’s performance relative to other approaches. Also, it is recog-
nized that design decisions made during training, such as the number of sample
points in a video stream, are likely to introduce a form of quantization error.
Given that the decisions were to allow sufficient data points with the available
memory, the error is unavoidable. It is therefore useful to evaluate and report
on the potential for error during samplling.

8 Conclusion

This paper describes an approach to create labels from data and use those labels
to enhance classification. While the example application is in the video question
answering domain, we believe the approach is applicable to any domain that
processes data is expressed as a time sequence.
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