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Abstract. Robot grasp detection, commonly performed using Deep Neural Net-

works (DNNs), has proven to be a memory and power-intensive task that is re-

quired in resource-constrained environments. This paper proposes the use of 

And-Or-Grammar Networks (AOGNets) to reduce the constraints on embedded 

platforms. The experiments compare the accuracy, memory usage, space require-

ment, processing time, and power consumption of an AOGNet that is tuned to 

image recognition with implementations of Resnet, ResNeXt and Squeezenet on 

an Nvidia Jetson Nano. This paper also proposes using the AOGNet architecture 

for object grasp detection, as its performance on image classification tasks 

demonstrate that it is more tuned to the stringent operational requirements of em-

bedded platforms. 
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1 Introduction 

1.1 Overview 

Object grasp detection is an initial step in the grasping process where graspable regions 

on an object are identified on the input image [1]. Forming a grasp on an object using 

visual information involves the stages of object grasp detection, grasp planning, motion 

planning, and motion execution shown in Figure 1. An optimal grasp is selected in the 

grasp planning step from the set of predicted grasps created in the grasp detection steps. 

The motion planning and control steps will use the optimal grasp to plan and execute 

the motion of the robotic arm to form the grasp. Deep neural network models have been 

developed and trained on datasets to identify graspable regions, giving accurate results 

as summarized in Table 1 below. Computer vision tasks using deep neural network 

(DNN) models are resource intensive and prove inefficient on embedded platforms. 

Strategies used to improve the efficiency of DNN models such as employing hardware 

accelerators like Graphical Processing Units (GPUs) to improve inference speed [7], 

model compression to improve memory efficiency [8], and improving the architectural  
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design of DNN models to improve both inference speed and storage requirements 

[9][10].  Several advances in neural network architectures have been made, where ar-

chitectural features have been introduced to improve the accuracy of the model. Archi-

tectural modifications also allow some DNN models to perform accurately using a 

small number of parameters for embedded platforms. Some of these models include 

mobileNet [11], ResNet-18, ResNet-34, ResNet-50 [12], ResNeXt-50 [13], ShuffleNet 

[14] and SqueezeNet [15].  

 

Fig. 1. General stages of the Robot Grasping Process 

This paper proposes to adopt a neural network architecture, the And-Or Grammar Net-

work (AOGNet) architecture, for the grasp detection step based on its performance on 

other computer vision tasks. The AOGNet model combines architectural features from 

top-performing models within the framework of an And-Or Graph [10]. The results 

presented for AOGNet from image classification and object detection showed compa-

rable performance with existing architectures while using a smaller number of param-

eters. This paper evaluates the potential application of the AOGNet model as an effi-

cient model for object grasp detection to be deployed on embedded platforms. The con-

tribution of this paper is the corroboration of the performance results of the AOGNet 

model to initially reported results and the proposal of its application for grasp detection 

tasks in future work.  

1.2 Paper Organization 

This paper has five sections. An overview of the AOGNet architecture in section 2. 
Section 3 outlines the methodology used to evaluate the AOGNet for object detection 
on the CIFAR-10 dataset and proposes a methodology for evaluating the model for 
grasp detection on the Cornell Grasp dataset.  Section 4 presents the results for object 
detection on the CIFAR-10 datasets and section 5 discusses the results presented in 
section 4.   

Table 1. Sample object grasp detection datasets and reported accuracy results.  

Dataset Models 
5 fold cross 

validation 

Cornell Grasp Dataset  [2] 
Genrative Residual Convolutional 

Neural Network [5] 
 

97.7 

 Resnet-50 Multi-grasp predictor [6] 96 
   

Jaquard Dataset [4] Genrative Residual Convolutional 
Neural Network [5] 

94.6 
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2 Background 

2.1 AND-OR Image Grammar 

 

Image Grammars are also effective tools for computer vision tasks due to their noise 

resistance [16]. The application of Image grammar to image processing seeks to find a 

scalable and recursive way of representing images so that they can be interpreted and 

used for reasoning tasks [17]. The AND-OR image grammar is the most common type 

of image grammar as they are useful in representing a wide variation of configurations 

in images and have been shown to be applicable in object detection [18], and human 

pose estimation [19]. AND-OR Grammars as a Grammar framework that allows for 

modeling of image structures and events being depicted within these images. AND-OR 

Graphs consist of three types of nodes [17]: 

1. Terminal nodes – represent input primitives, which in the case of images 

would be pixel values from a sketch graph which was derived from the origi-

nal image. 

2. AND nodes – these represent compositional configurations.  

3. OR nodes – these represent alternative configurations. 

2.2 AOGNet Architecture 

The AOGNet architecture consists of AND-OR graphs that are arranged sequentially 

in groups called AOG blocks (Figure 2). The AND-OR graphs in the AOG block are 

like the previously described AND-OR graphs in section 2.1 but incorporate additional 

features adopted from existing deep neural network (DNN) architectures that performed 

successfully on image classification tasks. These DNN architectures include ResNet, 

ResNeXt, DenseNets, Deep Pyramidal ResNets, and Deep Layer Aggregation Net-

works.  

 

 

Fig. 2. AOGNet [10] showing AOG Block layers. 

 

The OR nodes perform an aggregation function where inputs are combined to form 

a single value like what is done in the ResNet architecture. AND nodes perform con-

catenation of input values like what is performed in the DenseNet architecture. The 

AND-OR graph also uses lateral pathways to connect “AND” or “OR” nodes in the 

same level which allows information to flow within the same layer in addition to being 
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fed forward into the next layer.  Lateral connections were borrowed from the Deep 

Layer Aggregation architecture. Skip connections between layers of AND nodes are 

also incorporated allowing some information to flow from one layer of AND nodes to 

another and by passing the OR node layer between them. This feature was adopted from 

the ResNet architecture. The reduction in the feature map from the input (terminal 

nodes) to the output (root node) was borrowed from the Deep Pyramidal ResNet archi-

tecture. Figure 3 shows the structure of the AND-OR graphs within the AOG block, 

with the features incorporated from the DNN models. 

 

 

Fig. 3. AOG Block [10] showing AND, OR and Terminal Node Operations 

3 Methodology 

The AOGNet model was trained and evaluated on performing Image classification 

tasks on the CIFAR-10 dataset and the performance was compared with that of ResNet, 

ShuffleNet, and ResNeXt. This section outlines the training and evaluation of these 

models as well as proposes further steps towards modifying and adopting the AOGNet 

model for object grasp detection on the Cornel Grasp Dataset for future work. 
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3.1 Datasets 

 

CIFAR-10 dataset. The CIFAR 10 Dataset is a small object classification dataset 

with 50,000 training images and 10,000 test images of 10 classes. Figure 4 shows 32 

sample images from the CIFAR 10 training set. 

 

Fig. 4. Grid of 32 sample images from the CIFAR-10 dataset 

Cornell Grasping Dataset. The Cornell Grasping Dataset consists of 1035 images of 

280 objects in various spatial orientations, along with annotation files used to create 

grasp rectangles on each image. The dataset also consists of point cloud datafiles for 

each image.  Figure 5 shows a sample image from the dataset with positive and negative 

grasp rectangle plotted on the object. The positive grasp annotations show best possible 

grasping areas where the negative annotation show areas to avoid forming grasps. 

 

 

Fig. 5. Showing the sample image of a shoe from the Cornell grasp dataset 
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3.2 Training and Evaluation 

Image Classification and Detection Tasks. The models will be trained on datasets 

that are currently used as the benchmark for image classification and object recognition 

which are the CIFAR-10, CIFAR-100, ImageNet-1K, and COCO datasets. The perfor-

mance measures to be used for classification tasks will be the Top-1 and Top-5 accu-

racy. The performance measure for object recognition will be average precision, which 

is also a common measure used in the literature that allows for this model to be com-

pared with those from the literature for object recognition tasks. For both image classi-

fication and object recognition tasks the training time and running time for models of 

different parameter sizes will also be used as a performance measure. The results for 

the CIFAR-10 data set are presented in this paper and results for the other image clas-

sification and object detection datasets will be presented in future work. 

 

Object Grasp Detection. The AOGNET models will be adapted for object grasp de-

tection. The resulting architectures will be trained on the Cornell Grasping Dataset and 

Google Grasp Dataset, and compared with the GraspNet [3] neural network architec-

ture. The performance measures to be used for Grasp detection tasks are affordance, 

grasp accuracy, Model size, power consumption, and runtime. The Grasp detection 

AOGNET shall also undergo an ablation study, as well as parameter sensitivity analy-

sis. 

 

Modifying the AOGNet Architecture. The AOGNet will be created and trained ini-

tially using the source code provided by its original creators to create AOGNet Models 

of roughly 1 Million and 2 Million parameters.  The AOGNet architecture will be cre-

ated and evaluated to provide a baseline for the comparison of object detection and 

image classification tasks on the embedded platform with other mobile architectures. 

Other variants of the AOGNet will then be created to introduce the following architec-

tural features: 

1. Dense lateral connections – making every node at a given level of the AND-OR 

tree be connected to every other node at the same level, as shown in Figure 6.  

 

 
 

Fig. 6. Showing AOGNET building block with dense lateral connections 
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2. Increased Branch splitting rule for k > 2 - making every node in a given layer 

branch into more than 2 nodes in the following layer. 

 

3. Top-down connections - Use of hour-glass topology AOGNET. 

 

4. Introduction of other node operations – use other architectural features such as 

fire module and channel shuffle that are used in SqueezeNet and shufflenet, to ex-

ploit their advantages to determine whether this modification would improve accu-

racy with a reduced number of parameters for the AOGNet architecture. 

The Modified AOGNet Architecture shall also be trained for object grasp detection 

on the Cornell Grasping Dataset.  

4 Preliminary Results 

Two AOGNet models were generated; Aognet-1M consisting of 3 layers of 1 

AOGNet Block in each layer, and AOGNet-2M consisting of two AOGNet Blocks in 

each of the three layers. These were trained on the CIFAR-10 Dataset along with 

Squeezenet, ResNet-18, ResNet-50, and ResNeXt-50. Table 2 summarizes the training 

hardware and parameters used for each model. Though AOGNet models have a smaller 

number of parameters it was observed that its training speed was slower than other 

models even on the faster NVIDIA A100 hardware (Figure 7).  

Table 2. Training parameters and runtime for test models 

 

Model GPU  

Hardware 

Algo-

rithm 

Learn-

ing rate 

(lr) 

Mo-

men

tum 

Epochs Batc

h size 

Training 

time 

(mins) 

Squeezenet A100 SGD 0.001 0.9 2000 32 499.065 

ResNet 18 Tesla T4 SGD 0.001 0.9 1000 32 328.785 

ResNet 34 Tesla T4 SGD 0.001 0.9 1000 32 558.291 

ResNet 50 Tesla T4 SGD 0.001 0.9 300 32  208.681 

ResNeXt 50 Tesla T4 SGD 0.001 0.9 300   32 230.870  

Aognet-1M A100 SGD 0.001 0.9 300 32 139.706 

Aognet-2M A100 SGD 0.001 0.9 200 32 
   

1342.955 
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              Fig. 7. Showing the comparison of training speeds for models 

 

All models were evaluated on the NVIDA Jetson Nano. The AOGNet models 

demonstrated higher accuracy for classifying images with a smaller parameter size than 

other models as shown in table 3 and figure 8. This supports the reported findings of 

the improvement AOGNet makes in accuracy for image classification on the ImageNet-

1K dataset. 

Table 3. top-1 and top-5 accuracy, and runtime for neural network architectures being evaluated 

on the NVIDA Jetson Nano (CPU) 

 

Method Number  

of  

Parameters 

Top-1  

Accuracy 

(%) 

Top-5 

Accuracy 

(%) 

Avg. 

Runtime 

(ms) 

SqueezeNetV1.1 727,626 71.11 93.48 13.577 

ResNet-18 11,689,512 74.36 97.66 26.026 

ResNet-34 21,797,672 74.67 97.15 41.626 

ResNet-50 25,557,032 74.93 97.68 48.684 

ResNeXt-50 25,028,904 75.44 97.91 55.748 

Aognet-1M 1,248,282 77.76 98.15 - 

Aognet- 2M 2,063,023 74.99 97.87 - 
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       Fig. 8. showing the comparison of top-1 accuracies for test models on the CIFAR-10 dataset 

5 Conclusion and Future work 

This paper demonstrated the improved accuracy of AOGNets over other common 

mobile deep neural network models. The drawback however is the slower training rate 

of the AOGNet model. Future work shall involve modifying the AOGNet model by 

introducing dense lateral connections, squeeze Expand and channel shuffle architec-

tural features and increase the branching at each layer from 2 to 3 to see its impact on 

model performance. This will be followed by adapting the AOGNet for object grasp 

detection on the Cornell Grasp Dataset. 
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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