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Abstract. Snake-like robots, with their complex and multi-jointed structure, hold 

great potential for navigating complex environments. However, real-time manip-

ulation of their movements can be challenging. As such, achieving autonomous 

mobility for these robots is a major area of research. This paper introduces a new 

machine learning-based control framework that utilizes a clustering algorithm to 

classify training data into multiple clusters. The motion control of snake-like ro-

bots involves multiple regression problems due to the multi-parameter control 

strategy. To address this, we propose a novel strategy that uses data from previous 

training to convert multiple regressions into a single regression problem for pa-

rameter modification. Our experimental results demonstrate the adaptability of 

the robots in different pipe environments using our algorithm framework. 

Keywords: Snake-inspired robot, autonomous mobility, motion control, param-

eter tuning, entropy variance 

1 INTRODUCTION 

Snake-inspired robots typically comprise a series of stiff links connected by joints, 

which are equipped with actuators to regulate their movement and create a structure 

similar to the skeletal system of a live snake. With multiple linkages and an impressive 

degree of freedom, snake-like robots have strong mobility in complex and unknown 

terrains [1]. Therefore, they can complete tasks on many occasions, such as post-disas-

ter rescue missions [2], industrial pipe cleaning and repair [3] or scientific exploration 

[4]. In the past decade, novel features emerged, be it orthogonal or universal joint struc-

ture [5] [6] [7]. Consequently, snake-like robots acquired the ability of three-dimen-

sional space movement, which strengthens their mobility in varied topography.  
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(a) Reality robot        (b) Simulation robot 

Fig. 1. The Snake-like robot 

Although the snake-like robots have high mobility in many environments, the con-

trol of snake-like robots is complicated. A variety of motions can be constructed to get 

the same motion effect in the same environment. Moreover, snake-like robots and their 

movements cannot be easily predicted in an unknown environment. 

Nowadays, there are two widely used control method. Firstly, we can pre-define the 

parameters to make robots move correctly in the known environment based on a widely 

used motion model [8] of snake-like robots. However, this method is not feasible for 

the unknown environment. Secondly, we can control the robot by tunning parameters 

artificially. While tunning parameters artificially is inefficient in unknown environ-

ments because it is difficult to tune the parameter accurately during robots’ motion. In 

addition, controlling the robots is a professional work and tunning the parameters inac-

curately will break the motion of snake- like robots. Therefore, autonomous mobility 

of robots is an expectation in robots’ motion [9]. 

Autonomous mobility is an important and challenging task in robots’ controlling 

[10]. Autonomous mobility requires high real-time performance to make robots respond 

to changes in the environment in time. What’s more, High efficiency is critical in au-

tonomous mobility. With high real- time performance and high efficiency, robots can 

make a rapid calculation when a mutation happens in the motion environment. 

Our innovative experience-based proposal autonomously determines the optimal 

control parameters of a snake-like robot in the current environment by entropy variance 

[11] [12] [13]. By tunning the optimal control parameter with regression value through 

the weighted least squares algorithm [14] [15], our strategy can make the robot progres-

sively adjust to its surroundings. Our control strategy can be divided into two parts: 

1. data acquisition and preprocessing, 

2. real-time data feedback and multi-parameter regression control. 

To evaluate the effectiveness of the proposed framework, we also apply it to our 

existing snake-like robot platform, which is shown in Fig.1(a) and Fig.1(b). Under our 

frame- work, the robot climbs pipes having different diameters and the performance of 

climbing is reported. Mentioned below are the main points of our paper: 
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• A novel framework for robot adaptive control is pro- posed. This framework 

greatly reduces the amount of effort of the regression calculation by adopting 

clustering algorithm for data preprocessing and the classification of real-time 

data. 

• A transformation of multiple regression problem is proposed to obtain the optimal 

control parameters in a real-time manner. The entropy variance is utilized to select 

the parameter which is the most sensitive in current state. Then, by regressing this 

parameter instead of all the parameters, we formulate a unit regression problem 

[16]. 

• Several case studies have been carried out, and the outcomes indicate that the 

approach we suggested is successful in achieving self-directed locomotion for ro-

bots inspired by snakes. 

Early preparations are demonstrated in the Section II. In Section III, proposed strat-

egy is explained in detailed. And then Simulation works are illustrated in Section IV. 

Section V shows the conclusion and our future prospects about the proposed strategy. 

2 RELATIVE WORK 

At present, the sinusoidal motion model is a prevalent control approach utilized for 

snake-inspired robots [8]. It was proposed by Professor Hirose. After that, Tesch et al. 

proposed a parametric equation based on the sinusoidal model for a snake-shaped robot 

with three-dimensional athleticism [17]. The implementation of a parametric equation 

facilitates the control methodology of robots inspired by snakes, resulting in a stream-

lined approach. This, in turn, permits the machine to identify its motion pattern using 

only a few control parameters, thus simplifying the entire process.  

The sinusoidal motion model function is shown in the following formula: 

 𝑇𝑖 = {
𝐴. sin(𝜔. 𝑡 + 𝑖. 𝜀)             𝑜𝑑𝑑

𝐴. sin (𝜔. 𝑡 + 𝑖. 𝜖 +
𝜋

2
)   𝑒𝑣𝑒𝑛 

 (1) 

By adjusting the amplitude A, phase ε, and angular rate ω in Eq.1, we can alter the 

maximum joint rotation angle, the shaping period of the robot, and its serpentine motion 

rate. Such robots must possess self-adaptive capabilities to adjust to their environment. 

To make the robots adapt to the unknown environment, the method which use the 

sensors to perceive the environment and embed the environment perception rules, has 

been widely used [18] [7] [19] [20]. A control methodology utilizing the central pattern 

generator (CPG) model was suggested by Tang et al [18]. Rollinson et al. introduced a 

control strategy for snake-inspired robots that adapts based on state estimation [7]. 

However, a complete correlation prediction model of control parameters is not given in 

their paper. As their methods is a gradient model based on state estimation, they are not 

suited to the mutation environment. Concerning robot control, some researchers have 

suggested utilizing machine learning techniques such as neural network models that 

incorporate information about the physical surroundings to establish effective control 

[21] [22] its effectiveness during the real-time motion of the robot is uncertain. 
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Our control strategy by experience-based learning is pro- posed. Combined with the 

clustering [25] [26] and the multi- parameter regression, we realize the real-time auton-

omous change of multiple control parameters in the robots’ movement. 

3 OVERVIEW 

Our approach proposed in this paper is shown in Fig.2. We divide our approach into 

two main parts: off-line work and runtime execution. 

 

Fig. 2. The overall approach 

3.1 OFF-LINE WORK 

In the preprocessing work, we let the robot move along 25 cm and 35 cm pipes for a 

large number of times and we collect and store the data listed in the form like Table I. 

 

Table 1.  RECORDED VALUE DURING TRAINING 

Symbol Definition 

𝜃𝑚,𝑖 
The joint angle of the ith joint which is 

measured 

M 
Mean of difference between measured 

joint 

A The value of amplifier 

𝜔 The value of angular rate 

𝜖 The value of phase 
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Our “Mean of difference” is ∑ 𝜃𝑑,𝑖
𝑛
𝑖=1 − 𝜃𝑚,𝑖 where n is the number of joints. 𝜃𝑑 =

[𝜃𝑑,1  𝜃𝑑,2 · · ·  𝜃𝑑,𝑛 ] is joint angles which we can calculate from Eq.1 and 𝜃𝑚 =

[𝜃𝑚,1  𝜃𝑚,2 · · ·  𝜃𝑚,𝑛 ] is the joint angles which are measured. The control vector is 

shown as [A ω ε] where A is the amplitude, ω is the angular rate, and the ε is the phase. 

All of them are applied in Eq.1. 

After collecting movement data of a snake-like robot, we combine the training data 

obtained in different environment and then cluster the data in order to optimize real-

time calculation. 

In this research, collected data in preprocessing is an extensive collection of data. As 

k − means + + algorithm has high efficiency and scalability, we take k means + + for 

clustering. We classify training set into N clusters. The clustering process is shown 

below: 

• Step 1: Decide the value of N by Eq.2. 

 𝑁 =  𝑎𝑟𝑔 min
𝑁𝑘

∑ (𝑆𝑖−𝐸)2𝑁𝑘

𝑁𝑘
   (2) 

where 𝐸 =
∑ 𝑆𝑖)𝑁(

𝑁
 and 𝑖 ϵ [1, N]. 

• Step 2: perform k-means++ as Algorithm 1 shows. 

 

Algorithm 1 k-means++ 

Input: Training set S, Blocks number Nk  

Output: Initial cluster center X 

0: function INITIALIZE(S(P), Nk) 

0:   X ← sample a point uniformly at random from S(P) 

0:   while |X| < Nk do 

0:    for i = 1 → |S(P )| do 

0:     I ← 𝑎𝑟𝑔 max𝑖( ∑ ||𝑋 − 𝑃(𝑖)||2
|𝑋|
𝑗=1 ) 

0:     X ← X ∪ {P (I)} 

0:     S(P)← S(P) − P(I) 

0:    end for  

0:   end while  

0:   return X  

0: end function 

0: 

0: function UPDATE(S(P), X) 

0:  while stopping criterion has not been met do 

0:   for i = 1 → |S(P)| do 

0:    C(i) ← arg min𝑘(||𝑃(𝑖) − 𝑋(𝑘)||2) 

0:   end for 

0:   for k = 1 → |X| do 
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0:    X(k) ←
∑ {𝐶(𝑖)=𝑘}𝑃(𝑖)

𝑖

∑ {𝐶(𝑖)=𝑘}𝑖
 

0:   end for 

0:   end while 

0:   return X 

0: end function=0 

 

After finishing the clustering, the result is stored in two parts: 

o The value of each cluster center. 

o The corresponding relationship between each group of 

data in training set and each cluster center. 

With Kmeans++, the collected data can be divided into Nk clusters. 

3.2 RUNTIME 

In robot’s running time, we get the real-time data periodically and then we do the fol-

lowing steps. Firstly, we categorize the real-time data based on the clustering result in 

off-line work. And then we select the most sensitive gait parameter according to the 

entropy variance. At last, we use the idea of weighted regression to modify the selected 

gait parameter and keep the other gait parameters unchanged. 

A. Parameter selection by entropy variance 

 

1. Real-time data categorization: Every time we get the real-time data, we relegate it 

to the certain cluster by Eq.3. 

 𝐶 = argmin
𝑁𝑘

(||𝑋(𝑘) − 𝑃𝑡||2) (3) 

S(X) is the cluster center set. X(C) is the closet vector to the real-time vector Pt. And 

X(k) is the ith cluster center of the cluster center set S(X). With Euclidian Distance For-

mula, we make a prediction on the similarity between two vectors. 

 

2. The selection of the preponderant data: After categorization of real-time data, we 

select those preponderant vectors whose Z-axis velocity are bigger than current 

(Eq.4). 

 S (V) = {P(i)|Vz
(i) ≥ VzPt, P(i) ∈ S(C)} (4) 

S(C) is all the vectors which belong to the cluster with the cluster center X(C). Vz
(i) is 

the vertical velocity com- ponent of the vector P(i) and Vz
(Pt) is the vertical velocity 

component of the real-time data vector. S(V) is the set of all the preponderant vectors for 

regression. 

 

Experience-based learning for multi-parameter regression control             309



 

3. The selection of the sensitive parameter: We adopt entropy variance as the 

reference to select the parameter which should be modified. The steps of select-

ing the sensitive parameter are as follows. 

• Step 1: We take the preprocessing operation to discrete 

the preponderant data (Eq.5). 

 𝑉𝑛𝑒𝑤
(𝑖)

= {
⌊
𝑉𝑧

(𝑖)

𝐿𝐷
⌋     𝑉𝑧

(𝑖)
> 0

⌈
𝑉𝑧

(𝑖)
−𝐿𝐷

𝐿𝐷
⌉    𝑉𝑧

(𝑖)
< 0

 (5) 

In Eq.5, LD is the adjustable step length for discretization. We eventually get the 

velocity discrete sequence: 

 𝑉𝑛𝑒𝑤
(𝑍)

 = [ 𝑉𝑛𝑒𝑤
(1)

 𝑉𝑛𝑒𝑤
(2)

 𝑉𝑛𝑒𝑤
(3)

 𝑉𝑛𝑒𝑤
(4)

 · · · · · ·] (6) 

• Step 2: There are a variety of possible values for each gait parameter. Thus, in 

order to record all the possible values, we make a set Sij(P ) which is the data set 

of jth possible value of the gait parameter i. And value of i is from 0 to 2 corre-

sponding to amplitude, phase and angular rate respectively. We calculate the en-

tropy about the vertical velocity of the jth possible value of the gait parameter i by 

Eq.7 as well as the entropy variance of the gait parameter i by Eq.8. In Eq.7, p(vz) 

is the appearance rate of each member in the velocity discrete sequence as Eq.6. 

In Eq.8, E(H) is the mean of velocity of the jth possible value of the gait parameter 

i and Ni is the number of possible values of the gait parameter i. 

 𝐻(𝑆)𝑖𝑗
(𝑃)

= −∑ 𝑝(𝑣𝑧 )log2 𝑝(𝑣𝑧)𝑣𝑧𝜖𝑉𝑛𝑒𝑤
(𝑍)  (7) 

 𝑉𝑎𝑟𝑖
(𝐻)

=
∑ (𝐻(𝑆𝑖𝑗

(𝑃)
−𝐸𝑖𝑗

(𝐻)
))2𝑁𝑖

𝑁𝑖
     (8) 

• Step 3: We normalize the entropy variance (Eq.9). 

𝑅𝑖
(𝑣𝑎𝑟)

=
𝑉𝑎𝑟𝑖

(𝐻)

∑𝑉𝑎𝑟(𝐻) (9) 

After the calculation of gait parameters’ entropy variance. the sensitive parameter 

will be found. And then the selected parameter’s value will be modified by regres-

sion. 

 

B. Assignment to the value of the selected parameter 

 

This study utilizes weighted regression to obtain the sensitive gait parameter value and 

applies the gradient descent method to resolve the weighted least squares problem when 

fitting the regression function. 

• Step 1: List the fitting prediction function (Eq.10) 
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𝐹𝑤(𝑃𝑡)  =  𝑊 𝑇 𝑃𝑡 ,𝑊 = [

𝑤1

𝑤2

⋮
𝑤𝑚

] (10) 

In Eq.10, W is the coefficient sequence of the fitting equation and m is the number 

of coefficients where Pt is the real-time collected data vector. Then we can get the 

error function (Eq.11) which takes the square of error as the estimation with n being 

the number of data of S(V) and Q being the vector consisting of the sensitive param-

eter component P(i)(P(i) ∈ P). 

 𝐷(𝑤) =
1

2𝑛
(𝐹𝑤(𝑃)𝑇 − 𝑄)𝑇(𝐹𝑤(𝑃)𝑇 − 𝑄) (11) 

𝑃 = [𝑃(𝑛)
(1)

 𝑃(2) ⋯𝑃], 𝑃(𝑖)𝜖 𝑆(𝑉) (12) 

𝑄 = [𝑄(1)  𝑄(2)  ⋯𝑄(𝑛)]𝑇 (13) 

To get the best-fit coefficient sequence W by the minimum D(w), according to gra-

dient descent method, we turn the Eq.11 into Eq.14. 

𝛻𝑤𝐷 =
1

𝑛
𝑃(𝐹𝑤(𝑃)𝑇  −  𝑄) (14) 

• Step 2: Perform the weighted operation on preponderant data vector to ensure the 

estimate result of fitting is good (Eq.16). 

𝛻𝑤𝐷 =
1

𝑛
𝑃𝑀(𝐹𝑤(𝑃)𝑇  −  𝑄) (15) 

𝑀 =

[
 
 
 
 
 
 
𝑉𝑧

(1)

𝐿𝑠
0 … 0

0
⋮

𝑉𝑧
(1)

𝐿𝑠

⋱

⋱
⋱

0
0

0 … 0
𝑉𝑧

(𝑛)

𝐿𝑠 ]
 
 
 
 
 
 

 (16) 

In Eq.16, Ls is the learning step and M is the learning rate matrix. 

• Step 3: Run coefficient vector by Eq.17. 

𝑊 =  𝑊 − 𝛻𝑤𝐷 (17) 

In this way, the coefficient sequence W is updated. And then we assign the predicting 

result to the sensitive parameter (Eq.18). 

𝑄 =  𝐹𝑤(𝑃𝑡)  =  𝑊𝑇 𝑃𝑡 (18) 

After this the new predicting result is produced. 
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• Step 4: Repeat the aforementioned steps until the most suitable coefficient is ob-

tained, and W is stable finally.151 

When iterative process is stopped, the best-fit coefficient Wbest will be obtained. By 

applying Wbest to Eq.18, we can get the regression value of the sensitive parameter. 

This value will be used in the robot control. It is worth noting that we only modify 

the sensitive parameter and others remain the same value. 

4 SIMULATION 

For simulations, we adopt the rolling gait as the funda- mental motion pattern. To val-

idate the adaptive control of snake-inspired robots during locomotion, we simulate their 

movements on pipes of varying diameters using the V-REP robot simulation platform. 

The simulation process can be divided into two categories: training and motion sim-

ulation. And we divide simulations into two parts: the adaptable motion along variable 

diameter pipes and the adaptable motion along straight pipes with different diameters. 

 

A. Training Process 

 

In the data acquisition process, we let the robot climb along the 25cm and 35cm pipes 

under different and collect 25 thousand volumes of training data in total. The interval 

of amplitude A, phase ε and angular rate ω are [40, 80], [0, 5] and [1.5, 3] respectively. 

What’s more, the step of A is 5, the step of ε is 1 and the step of ω is 0.5. We make the 

robot climb with different combination of parameters and then collect the data. In the 

preprocessing process, we cluster the training data. We set the number of clusters as 25 

by Eq.2 and Fig.3. The number of data for most of classes is 1000 ± 500 (Fig.4). 

 

Fig. 3. The variance in cluster size of Nk 

 

Fig. 4. The result of clustering 
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B. The autonomous motions along variable diameter pipes 

 

Climbing simulation in this part is climbing the pipe with 35cm lower diameter and 

25cm upper diameter and climbing the pipe with 25cm lower diameter and 35cm upper 

diameter. Next, the two groups of simulation will be analyzed in detail. 

 

1. Simulation about climbing the pipe with 35cm lower diameter and 25cm upper 

diameter: The results are shown in Fig.5. During the initial 15 seconds, the robot alters 

its configuration to accommodate the unfamiliar pipe, resulting in a near-zero velocity. 

Subsequently, from 15 to 40 seconds, the robot climbs up the 35cm diameter pipe. In 

this phase, amplitude A, phase ℇ and angular rate Ω are all increasing and all of the 

them will be stable finally. Around the 50-second mark, the robot reaches the interface 

where the diameter of the pipe alters. As the pipe changes obvious, the robot cannot 

grasp the 25cm pipe immediately, which causes the velocity of the robot fluctuate 

around zero. The robot keeps learning and autonomously adjust its parameters to con-

tinue its climbing motion. From the Fig.5(d) and Fig.5(e), it can be found that the am-

plitude and phase are increasing in this phase, which make the robot continue moving 

up. 

Eventually all control parameters as well as velocity are stable. It shows that under 

this control strategy, the robot can adjust its parameters autonomously to adapt to the 

environment. 

     

(a)t=39.8s     (b) t=60.0s      (c) t=64.5s 

     

(d) Amplifier versus Time        (e) Phase versus Time 
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  (f) Angular rate versus Time       (g) velocity versus Time 

Fig. 5. The movement and the curves of parameters in the motion when the robot climb the pipe 

with 35cm lower diameter and 25cm upper diameter 

2. Simulation about the pipe with 35cm lower diameter and 25cm upper diameter:  

 

It is similar with the previous simulation, but the movement is different. The results are 

shown in Fig.6. Around 52 seconds, the robot comes across the interface where the pipe 

diameter shifts. At this time the robot autonomously reduce amplitude slightly 

(Fig.6(d)) and then significantly increase phase (Fig.6(e)). In this way, the control strat-

egy makes the robot move itself from the 25cm part up to the 35cm part. 

Both simulations show that our method is effective to adapt the robot to climb along 

the variable diameter pipe. 

     

(a) t=40.5s      (b) t=58.9s        (c) t=66.0s 

     

(d) Amplifier versus Time            (e) Phase versus Time    
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    (f) Angular rate versus Time         (g) velocity versus Time 

Fig. 6. The movement and the curves of parameters in the motion when the robot climb the pipe 

with 25cm lower diameter and 35cm upper diameter 

C. Contrast experiments on other straight pipes 

 

As the unknown environment in the real world is complex and volatile, there may be 

differences between training environment and actual environment. Our training envi-

ronment is vertical pipes with 25cm or 35cm diameter. To ascertain that this control 

approach can be employed in a variety of scenarios, we carry out multiple independent 

simulations on straight pipes with diameters of 20cm, 25cm, 30cm, 35cm, or 40cm. The 

result of these simulations is shown in Fig.7. Next is the detailed analysis. 

By observing the parameter curve we can find that the smaller diameter of the pipe 

is, the much more time the parameters need to spend in adjusting. All parameters finally 

reach a stable value and satisfy the requirements of movement. The robot cannot form 

a complete loop to coil around the 40cm diameter pipe due to its insufficient length. In 

this case, the influence made by phase ℇ is very weak (Fig.7(b)). For the 20cm diameter 

pipe, it is difficult for the robot to climb along the pipe if we only increase the amplitude 

A, because when the amplitude is too large, it will cause the snake-like robot curling up 

to a high degree, which is not conducive to climb. Therefore, to let the robot climb 

small diameter pipe, we need to constantly adjust the phase ℇ to meet the amplitude A's 

corresponding requirements. By observing the variation curve of the control parameters 

of the small diameter pipe, we can found that the phase ℇ and the amplitude A of the 

robot are coordinated in the process of self-regulation (Fig.7(a)) (Fig.7(b)). The simu-

lations show that the robot can use our control strategy to catch the unknown pipe and 

adjust itself to a suitable climbing state. 

     

(a) Amplifier versus Time         (b) Phase versus Time 
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  (c) Angular rate versus Time       (d) velocity versus Time 

Fig. 7. The movement and the curves of parameters in the motion when the robot climb the pipe 

with different diameters 

It is noteworthy that, in all testing environments, the robot's movement velocity ul-

timately oscillates within a consistent range (Fig.7(d)). The pipe diameter solely im-

pacts the rate at which the velocity converges, and the control parameters of the robot 

ultimately attain stability (Fig.7). Hence, we see the external environment's effect on 

this control strategy is very weak. What's more, the robot will find the optimal param-

eter during its motion. 

In conclusion, the simulations demonstrate that the adaptive control in robot's motion 

can be realized through our proposed framework. 

5 CONCLUSION AND FUTURE WORK 

Our robot-based adaptive control is based on the learning experience of robots. We take 

Z-axis velocity as feed-back signal and adopt regression to correct the robots' action. 

We simplify the runtime learning through clustering and transform the multiple regres-

sion into unit regression. Experiments show that the scheme is effective. 

This approach is noteworthy for its potential applicability beyond pipe climbing, ex-

tending to other areas of robotics. We believe that the algorithm can adapt to the other 

corresponding scene, such as the unmanned vehicle's variable motion, the rugged 

ground motion of the serpentine robot and the simulated PID control as long as enough 

training data and clear moving purpose are given. 

Moving forward, we intend to enhance the algorithm via the following means. The 

hierarchical clustering [27] [28] will be applied to the model to achieve uniform clus-

tering to ensure that the data volume of each regression is consistent. Existing regres-

sion models will also be improved. What's more, we will carry out testing in much more 

complex climbing scene such as simulating trees in nature and bifurcate pipelines. We 

will develop much more complex rules for learning and running in much more complex 

environments. 
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