

https://doi.org/10.2991/978-94-6463-314-6_29

Parallelization of Content aware Image Resizing

RM Prakash Ramanathan1, R Manimegalai2∗, D Sivaganesan3

, and Sk Noor Mahammad4

1 PSG Institute of Technology and Applied Research, Coimbatore TN 641062, India,
d20z123@psgitech.ac.in

2 PSG Institute of Technology and Applied Research, Coimbatore TN 641062, India,
drrm@psgitech.ac.in

3 PSG Institute of Technology and Applied Research, Coimbatore TN 641062, India,
sivaganesan@psgitech.ac.in

4 IIDM Kancheepuram,
noor@iiitdm.ac.in

Abstract. Image resizing is a common technique used in image editing
and processing to reduce or increase the image’s dimensions. The naive
approaches, such as cropping or scaling, may result in image distortion or
data loss. A more sophisticated method is content-aware image resizing,
which employs algorithms such as Seam Carving. A path of connected
pixels is called as seam. In Seam Carving the least important seam gets
removed to increase or decrease the size of the image. The algorithm
takes into account the image’s gradient magnitude, which represents the
changes in intensity between adjacent pixels. This is used to calculate
the importance of each pixel. But the issue with seam carving is the
execution time delay. In this work, parallelization techniques such as
CUDA, MPI and OpenMP are applied to improve the performance and
speed. No significant speedup is achieved from MPI and openMP, 2x
speedup is achieved from CUDA.

Keywords: CUDA, OpenMP, MPI, Parallelization, Seam Carving, Im-
age resizing

1 Introduction
In the seam carving algorithm, the word seam means a path of connected pixels,
that range from top to bottom or from left to right. The seam will be identified
using an energy function, image can be resized by removing seams in a particular
direction in case of size reduction, or add the seams in one direction in case of
size increase.

1.1 Energy Function and Dynamic Seam Table

Energy function is basically the pixel importance. To determine pixel impor-
tance, the average absolute difference between color values of six pixels that are
directly adjacent to it are used. The energy function is computed in Equation
(1). In Equation (1) E represents the energy value of the pixel, i,j indicate row
and column number of the pixel [1]. The energy could also be calculated using

© The Author(s) 2023
C. Kiran Mai et al. (eds.),

, Atlantis Highlights in Computer Sciences 18,
Proceedings of the Fourth International Conference on Advances in Computer

Engineering and Communication Systems (ICACECS 2023)

mailto:anaghabharadwaj02@gmail.com
mailto:srinidhi.kulkarni@jyothyit.ac.in
mailto:bharath.kr702@gmail.com
https://doi.org/10.2991/978-94-6463-314-6_29
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-314-6_29&domain=pdf

general edge detection kernels like Sobel edge detection [2], Prewitt Operator
etc.

E(i, j) = |d/di(i, j)|+ |d/dj(i, j)| (1)

In the process of active image resizing, it becomes crucial to identify the
most optimal seam. To identify the seam, seam carving utilizes a seam map.
To determine the seam map, a dynamic programming approach is employed. A
seam table is used, where the first row represents the exact values of the energy
function, and for subsequent rows Equation (2) can be used.

In Equation (2), M is the seam table and E signifies the energy function, i
and j represent rows and columns, the last row will have the cumulative value
of the seam table. The seam table is used to select the seam that has the lowest
energy. This method is very computationally intensive, a parallel approach would
give better results.

M(i, j) = E(i, j) +min[M(i− 1, j − 1),M(i, j − 1),M(i+ 1, j − 1)] (2)

Parallel programming is the process of running the program parallelly by
using multi core, multi thread or GPU systems. In different parts of the paper,
three different parallelization techniques are explored to parallelize the sections
of code that are computation intensive. The first step is to profile the code.
Next the concurrency in the computationally intensive parts are identified. The
computationally intensive parts are then parallelized using OpenMP, MPI and
CUDA [3].

2 Literature Review

The traditional method to resize an image such as cropping or scaling have draw-
backs, with cropping valuable information could get lost, and with scaling the
image undergoes distortion, but Shai Avidan and Ariel Shamir came with a novel
technique called Seam carving [1], where for resizing, seams will be removed or
added. The least important seam in the image can be figured out by using an en-
ergy calculation function that utilizes visual saliency and edge detection. But he
main disadvantage of seam carving algorithm is its computational intensive and
it requires a lot of execution time. But luckily most of the commercially available
PCs nowadays use a processor that has multiple cores, or at least 2 cores [4]. So
MPI could be used to increase the execution speed of the algorithm. But MPI
could cause communication bottlenecks that could slow down the program.

Owing to the popularity of GPUs, GPGPUs can be used to parallelize the
energy function of the Seam carving algorithm using CUDA [5].The 1D array of
the image can be mapped into a 2D array in CUDA, the input thread is split into
tiles consisting of consecutive rows. In the work presented by Duarte et al. [5], the
authors explores three distinct approaches using CUDA. The attained speedup
of energy calculation function was approximately 75x. However, the seam map

Parallelization of Content aware Image Resizing 287

only exhibited a small speedup of 4x, because to its inherent dynamic nature.
Though the above technique can efficiently parallelize the energy map, it leaves
out the dynamic seam function. Since dynamic seam is also computationally in-
tensive, it is preferable to parallelize it. To parallelize it a Non-Cumulative Seam
Carving(NCSC) algorithm which omits dynamic programming can be used. The
algorithm in [6] has reduced the communication overheads between GPUs, re-
duced memory transfer time and allocation time. But NCSC does have some of
the same drawbacks of the original seam carving algorithm, geometrical shapes
could get distorted.

Seam carving by itself is very effective for content aware image resizing, but
it can sometimes lead to data loss. A combination of scaling along with seam
carving algorithm can be applied to greatly improve the quality of the output. In
this approach proposed by Dong et al, after the removal of each seam, the image
gets scaled and the distance will be measured from the original distance [7].
The main drawback with this technique is its inability to preserve the ratio
that is present in the original image. In [8], a comprehensive analysis of all the
advancements that have been made related to this novel image resizing technique
can be found. The studies related to seam carving could be classified into visual
output improvement, computation time improvement and deductions on Seam
Carving based Resizing. From analysis it is clear that all the proposed methods
have different drawbacks, and most of those drawbacks can be avoided by using
more efficient saliency techniques. A combination of all the above mentioned
techniques can be used to improve the algorithms performance.

3 Parallelization

Fig. 1. Steps Involved in Parallelization of a Sequential Algorithm

Fig 1 illustrates the steps that are performed in order to parallelize an algo-
rithm. The first step is profiling, where all the hotspots in the code are identified.
In the next step, the concurrent relationships at the hotpots are identified. Fi-
nally, the code is parallelized using techniques such as CUDA, OpenMP and
MPI.

288 R. M. Prakash Ramanathan et al.

Fig. 2. Graphical Representation of Function Calls

The existing algorithm for Seam carving is analyzed using a profiling tool
called GProf [9]. Profiling is used to identify the hotposts in the code, which are
computation intensive. Flat profiling is used to find the functions that are get-
ting called the most. GProf gives gmon.out which contains the code’s complete
profiling information. The gmon.out file can be represented in a graphical for-
mat called the call graph which is shown in Figure 2. Line profiling is performed
using Gcov, in line profiling the lines in the code are numbered based on the
number of times they get executed.

From the call graph, it is clear that the energy calculation function and
the dynamic seam table calculation function are the most time consuming. The
energy calculation function can be easily parallelized, since all the results are
independent of each other, it executes nested loops for computing the value of the
partial derivatives. It can be parallelized by using multi-threading. For a simpler
implementation 2D array of the image can be converted into a 1D array, and in
CUDA the 1D array is executed parallelly. For the Dynamic Seam calculation,
dynamic programming is applied, hence all the concurrently calculated values
are interdependent, to parallelize it the row values can be calculated parallelly,
where each row can be implemented parallelly.

The idea behind parallel computing is to break down a larger task into sep-
arate independent tasks, and to execute them simultaneously [10]. There are
a lot of parallel computing techniques, but in this work, three techniques have
been mainly employed: Multi-threading, Multi-processing, and General Purpose
Graphics Processing Unit(GPGPU) Computing. Multi-threading involves the
creation of multiple threads within a single process, allowing tasks to be executed

Parallelization of Content aware Image Resizing 289

concurrently. On the other hand, Multi-processing leverages multiple processors,
each with its own memory space, to perform tasks in parallel. GPGPU Comput-
ing utilizes Graphics Processing Units (GPUs) for general-purpose computing.
These techniques play significant role in optimizing performance and achieving
efficient computing solutions for various applications.

4 Experimental Results

Parallelization using CUDA is implemented through Google Colab’s Jupyter
notebook, which is powered by two processors with identical specifications: In-
tel(R) Xeon(R) CPUs running at 2.20GHz. On the other hand, the OpenMP
and MPI sections are implemented on a separate system running Ubuntu 20.04.5
LTS. This system is equipped with an Intel Xeon E-2224 CPU, which operates
at a clock speed of 3.40 GHz and has four cores.

4.1 Performance Analysis of Parallelization using OpenMP

OpenMP is an API used for parallel programming. It is used by developers to
parallelize specific regions of their code, without affecting other regions [11].
Using OpenMP API the energy calculation function is parallelized, different
numbers of threads are used to identify the optimal thread pool for the function,
the speedup peaked at 30 threads, and then the speedup started to decrease.
Figure 4a compares the number of threads and the average speedup. Figure 4b
compares the execution time to the number of threads. The program executes
efficiently at 30 threads. It is observed that parallelization with more than 60
threads does not improve the performance. Images of 64 KB size are tested.

4.2 Performance Analysis of Parallelization using MPI

Message Passing Interface is used for parallel computation on distributed mem-
ory systems. It is used to divide a large computational task into smaller tasks,
that can be run simultaneously [12]. The energy function is relatively easy to
parallelize. The dynamic seam function is not parallelized. Figure 5a compares
the number of processes and the average speed increase. Fig 5b compares the ex-
ecution time to the number of processes. The most efficient speedup is obtained
with seven processes. Images of 64 KB size are tested.

4.3 Performance Analysis of Parallelization by CUDA

Compute Unified Device Architecture(CUDA) is an API that can be used to
perform certain general purpose computing problems in GPU. This technique is
called as GPGPU. CUDA gives direct access to GPU’s virtual instruction set and
parallel computation features to compute kernels [13]. For the implementation
in CUDA, the energy function can be easily parallelized. But the Dynamic Seam
function is hard to parallelize since it follows dynamic programming,

290 R. M. Prakash Ramanathan et al.

4.4 Energy Function and Dynamic Seam

For the energy function, all the pixels by default in the program will be stored in
an one dimensional array. The location of adjacent pixels can be mathematically
calculated by just using the location of current pixel, height and width of the
image. The 1 dimension image can be broken into a 1D thread block and each
thread can be executed concurrently. In the energy function, there is no inter-
dependence between pixels, so ideally the time complexity must go from O(n)
to O(1) depending on the number of block and threads.

For the Dynamic seam, the parallelization is hard since it follows dynamic
programming, the value of each pixel in a row depends on the previous row pixel
value, but still each row can be executed parallelly by dividing them and synchro-
nizing them after execution of a row, but this could create more delay because
each row has to be synchronized. So significant speedup cannot be achieved.
Figure 6a compares the number of threads and the speedup obtained with eight
threads appeared to be optimum. The program without CUDA executes in 42
seconds and the program with CUDA and at optimal 8 threads executes in 22
seconds, 10MB size images are tested. Fig 6b compares the execution time to
the number of threads. In Figure 3 it can be seen that the execution time for
images of various sizes are reduced by half in the parallel implementation when
compared to the serial implementation.

In OpenMP only minimal speedup is achieved, data synchronization and
thread switching has greatly affected the maximum speedup that was targeted.
For MPI significant speedup is not achieved due to the lack of cluster comput-
ers, and distributed memory systems. The speedup for MPI depends heavily on
the underlying hardware. For CUDA 2x speedup is achieved when compared
to the serial implementation. So GPGPU technique is the best approach for
parallelization of seam carving algorithm.

Fig. 3. CUDA vs Serial Comparison based on Execution Time

Parallelization of Content aware Image Resizing 291

(a) Speedup vs Number of Threads (b) Execution Time vs Number of Threads

Fig. 4. Results using OpenMP based implementation

(a) Speedup vs No of Processors (b) Execution Time vs No of Processors

Fig. 5. Results using MPI based Implementation

(a) Speedup vs Number of Threads (b) Execution Time vs Number of Threads

Fig. 6. Results using CUDA based Implementation

292 R. M. Prakash Ramanathan et al.

5 Conclusions and Future Enhancements

From the experimental results, it becomes evident that Seam Carving is an
incredibly efficient algorithm for performing content-aware image resizing. How-
ever, it does come with certain drawbacks. For instance, when dealing with very
high-resolution images, the energy function calculation can be quite time con-
suming. Therefore, this paper suggests that a parallel implementation of the
Seam Carving algorithm presents a viable solution. The results obtained from
the parallel implementation demonstrates a significant reduction in execution
time, particularly when utilizing GPGPU systems. To further enhance the algo-
rithm, future work could focus on improving the parallelization of the Dynamic
Seam function.

References

1. S. Avidan and A. Shamir, “Seam carving for content-aware image resizing,” in
ACM Special Interest Group on Computer Graphics and Interactive Techniques
2007 papers, pp. 10–es, 2007.

2. N. Kanopoulos, N. Vasanthavada, and R. L. Baker, “Design of an image edge
detection filter using the sobel operator,” IEEE Journal of solid-state circuits,
vol. 23, no. 2, pp. 358–367, 1988.

3. T. Rauber and G. Rünger, Parallel programming. Springer, 2013.
4. J. Stultz and A. Edelman, “Seam carving: Parallelizing a novel

new image resizing algorithm,” Project Report (Online) URL:
http://courses.csail.mit.edu/18.337/2008/projects/reports/stultz-6338.pdf, 2008.

5. R. Duarte and R. Sendag, “Accelerating and characterizing seam carving using a
heterogeneous cpu-gpu system,” in PDPTA, 2012.

6. I. Kim, J. Zhai, Y. Li, and W. Chen, “Optimizing seam carving on multi-gpu sys-
tems for real-time content-aware image resizing,” The Journal of Supercomputing,
vol. 71, pp. 3500–3524, 2015.

7. W. Dong, N. Zhou, J.-C. Paul, and X. Zhang, “Optimized image resizing using
seam carving and scaling,” ACM Transactions on Graphics, vol. 28, no. 5, pp. 1–
10, 2009.

8. Z. K. Senturk and D. Akgun, “Seam carving based image retargeting: A survey,”
in 2019 1st international informatics and software engineering conference, pp. 1–6,
IEEE, 2019.

9. J. Fenlason and R. Stallman, “Gnu gprof,” GNU Binutils. Available online:
http://www. gnu. org/software/binutils (accessed on 21 April 2018), 1988.

10. M. J. Quinn, “Parallel programming,” TMH CSE, vol. 526, p. 105, 2003.
11. R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and J. McDonald, Parallel

programming in OpenMP. Morgan kaufmann, 2001.
12. W. Gropp, W. D. Gropp, E. Lusk, A. Skjellum, and A. D. F. E. E. Lusk, Using

MPI: portable parallel programming with the message-passing interface, vol. 1. MIT
press, 1999.

13. S. Cook, CUDA programming: a developer’s guide to parallel computing with GPUs.
Newnes, 2012.

Parallelization of Content aware Image Resizing 293

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
 The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

294 R. M. Prakash Ramanathan et al.

http://creativecommons.org/licenses/by-nc/4.0/

	Parallelization of Content aware Image Resizing

