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Abstract. With the drastic changes in global climate, the frequent occurrence of 

extreme weather events has led to an increasing number of flood events, high-

lighting the crucial importance of accurate watershed runoff forecasting for dis-

aster prevention, water resource management, and environmental protection. 

However, conventional machine learning methods have often struggled to es-

tablish precise models when facing complex hydrological environments, result-

ing in significant forecast deviations. In contrast, deep reinforcement learning 

methods have shown remarkable performance in handling complex problems 

and achieved substantial success in various domains. In this context, our study 

takes the pioneering step of applying deep reinforcement learning methods to 

watershed runoff forecasting, aiming to enhance forecast accuracy and reliabil-

ity to address the challenges posed by global climate change and frequent 

floods. We conducted comparative experiments on commonly used machine 

learning methods, namely Long Short-Term Memory (LSTM) and Deep Q-

Network (DQN), for watershed runoff forecasting. The experimental results 

demonstrate that DQN, with a forecast accuracy of approximately 91.3%, out-

performs LSTM significantly in terms of forecast accuracy and reliability. Even 

when DQN encounters forecast errors, the deviation does not exceed one runoff 

level.  
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1 Introduction 

In the context of ongoing global climate change and the frequent occurrence of ex-

treme weather events and floods worldwide, watershed runoff forecasting plays a 

crucial role in flood control and disaster reduction, water resources management, and 

ecological conservation [1]. Accurate forecast of watershed runoff is of paramount 

importance for timely response to floods and waterlogging disasters, rational utiliza-

tion of water resources, and maintenance of ecological balance [2].  
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In the past, many methods have been employed for runoff forecasting, encompass-
ing statistical methods, physical models, and neural network models [3]. While these 
methods can provide predictions for watershed runoff to a certain extent, practical 
applications reveal some challenges and shortcomings [4]. These methods exhibit a 
notable reliance on historical observation data. However, inadequate historical data or 
poor data quality can adversely impact their prediction performance. Moreover, when 
confronted with intricate hydrological environments, terrains, and soil types, these 
methods often encounter challenges in establishing precise models [5], leading to 
significant deviations in prediction results. Simultaneously, the determination of pa-
rameters necessitates expertise and professional knowledge, making the selection and 
adjustment of parameters challenging for complex watershed systems. 

In recent years, machine learning and deep learning have demonstrated remarkable 
capabilities in approximating nonlinear systems and handling high-dimensional data 
[6], [7], and in hydrological forecasting, it has also achieved many remarkable 
achievements. For example, Xu et al. propose an LSTM and PSO-based deep learning 
model, using PSO to optimize LSTM hyperparameters to improve learning sequence 
features, to predict flooding in specific watersheds from rainfall and runoff data[8]. 
Xiang et al. propose the Graph Neural Rainfall-Runoff Model, a deep learning model 
fully utilizing spatial data that, compared to baselines, has less overfitting and signifi-
cantly improves performance[9]. Moreover, deep reinforcement learning (RL), an 
emerging artificial intelligence technology, has exhibited superior abilities in address-
ing complex problems and optimizing decision-making when compared to conven-
tional machine learning methods [10]. As a result, it has achieved considerable suc-
cess across diverse domains, including robotics [11], the Internet of Things [12], gam-
ing [13], and autonomous driving [14]. Despite the superior capabilities of RL, to the 
best of our knowledge, there have been no reports on the utilization of RL methods 
for runoff forecasting. 

This paper introduces a pioneering approach for watershed runoff forecasting, uti-
lizing deep reinforcement learning methods [15], to forecast future runoff from histor-
ical precipitation, runoff, and other data [16]. In this study, we utilized the Deep Q-
Network (DQN) in the domain of deep reinforcement learning and made specific 
modifications to adapt it to our research. Firstly, we replaced the traditional Q net-
work with an LSTM neural network [17]. Secondly, our DQN architecture comprises 
two neural networks with identical structures: one serves as the Q network, and the 
other as the Q-Target network. Subsequently, we conducted performance experiments 
for both LSTM and DQN, comparing accuracy and loss during the training process, as 
well as accuracy on the test dataset. The test results demonstrate a significant im-
provement in accuracy for DQN compared to LSTM.Formatting the title, authors and 
affiliations 
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2 Method for watershed runoff forecast 

2.1 Deep Q-Learning network model 

DQN is a Q-learning algorithm based on deep neural networks and is also a form of 
value function approximation. In the DQN algorithm, the agent does not directly de-
rive a comprehensive behavioral strategy from historical experience data. Rather, it 
learns from the reward values conveyed by the environment. Q-learning algorithm 
approximates the value function for state-action pairs (Q function) using deep neural 
networks. The Q function estimates the cumulative reward obtained by executing a 
certain action in the current state. 

In the context of DQN, there exist two networks with identical structures: one is re-
ferred to as the Q-Target network, while the other is denoted as the Q network. In this 
study, we employed LSTM networks to approximate the Q function, using them as 
both the Q-Target and Q networks. LSTM networks offer significant advantages for 
handling time series data due to their unique memory cell structure, which effectively 
captures long-term dependencies in temporal data. As illustrated in figure 1, we uti-
lized a 3-layer LSTM network, with each LSTM layer containing 64 neurons. The 
role of this architecture is to process sequential data and learn complex patterns within 
it. Following the output from the LSTM network, we utilized a fully connected layer 
to output the Q-value function Q(𝑠, 𝑎), thereby accomplishing the forecast of runoff in 
the watershed. 

 

Fig. 1. The framework flow chart of DQN 

Due to the high correlation between the previous state and the current state during the 
iterative interaction between the DQN agent and the environment, a memory buffer, 
as illustrated in figure 1, is introduced to store training samples over time. This buffer 
serves to break temporal correlations and smooth out changes in the data distribution, 
preventing the neural network from overfitting and failing to converge. During each 
learning iteration, DQN randomly selects a batch of samples from the memory buffer, 
inputs them into the neural network, and conducts gradient descent. As new training 
samples are generated, a mixture of old and new samples is updated in batches, dis-
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rupting the correlation between adjacent training samples and enhancing sample utili-
zation. 

2.2 Model training and updating 

At the beginning of the training process, the agent utilizes perceivers to collect the 
current environment's state information and employs the 𝜀-greedy algorithm to select 
the action to be executed. The 𝜀-greedy algorithm is a strategy used to balance explo-
ration and exploitation. Specifically, when the agent makes action selections, the ε-
greedy algorithm randomly selects an action with a probability of ε (0 < ε < 1) for 
exploration and selects the action with the highest known Q-value with a probability 
of (1-ε) for exploitation [18]. By adjusting the value of ε, the agent can strike a bal-
ance between exploring unknown actions and exploiting known optimal actions, ena-
bling it to better explore the environment and gradually optimize its decision-making 
strategy. 

In the DQN algorithm, the Q network takes states as input and outputs Q-values for 
various actions. The more accurate these Q-values are, the better the Q network is 
trained. The Q-Target network is solely used for calculating the Target Q values, 
while the current Q values are predicted solely by the current Q network. The differ-
ence between the Q network and the Q-Target network is that the Q network is updat-
ed in the experience replay buffer with each step, while the Q-Target network period-
ically performs a hard copy (a complete replication) of the Q network's parameters to 
update itself. This delayed update is designed to ensure stability during the training of 
the Q network. Consequently, the agent can converge faster to superior strategies 
during the learning process. The loss function formula is computed by formula (1). 

 𝐿𝑜𝑠𝑠 ൌ ሺ𝑟 ൅ 𝛾 ∙ 𝑚𝑎𝑥𝑄௔ᇲሺ𝑠ᇱ, 𝑎ᇱ; 𝜔ିሻሻ െ 𝑄ሺ𝑠, 𝑎: 𝜔ሻଶ (1) 

During the training phase, firstly, the current state 𝑠 is input into the Q network, re-
sulting in the Q value denoted as  𝑄ሺ𝑠, 𝑎; 𝜔ሻ, where 𝑎 and 𝜔 denote the current action 
and network parameters, respectively. Subsequently, the next state 𝑠ᇱ, is input into the 
Q-Target network, yielding Q values for various actions, denoted as  𝑄௔ᇲሺ𝑠ᇱ, 𝑎ᇱ; 𝜔ିሻ. 
The action with the maximum Q value is then selected. Finally, 𝑄ሺ𝑠, 𝑎; 𝜔ሻ serves as 
the network's prediction, while 𝑟 ൅ 𝛾 ∙ 𝑚𝑎𝑥𝑄௔ᇲሺ𝑠ᇱ, 𝑎ᇱ; 𝜔ିሻ serves as the actual value 
for the network. The loss function is chosen as the variance for error backpropagation. 
In this study, the parameter 𝛾 (0 ൑ 𝛾 ൑ 1) was set to 0.3, representing the discount 
factor. It balances immediate and future rewards. Lower values of 𝛾 prioritize short-
term gains, while higher values emphasize long-term rewards, allowing the agent to 
optimize its strategy. 

 𝜔௧ାଵ ൌ  𝜔௧ ൅ 𝛼 ∙ 𝐿𝑜𝑠𝑠 ∇ 𝑄ሺ𝑠, 𝑎; 𝜔ሻ (2) 

By solving for the parameter 𝜔, we can obtain the update formula for the Q network, 
as shown in formula (2). The parameter 𝛼 represents the learning rate, a critical factor 
controlling how large each parameter update is during training. After each round of 
training, the parameter 𝜔 of the Q network is updated in real-time, while the parame-
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ter 𝜔ି of the Q-Target network is updated with a delay. In our study, after several 
rounds of training, all parameters of the Q network are fully transferred to the Q-
Target network. 

3 Experiments and analysis of results 

3.1 Experimental platform and dataset  

In this paper, the experimental setup used a Lenovo workstation with the following 
specifications: OS - Ubuntu 20.04.6 LTS, CPU - Intel(R) Xeon(R) Gold 6128 CPU @ 
3.40GHz, RAM - 128GB, GPU - RTX 2080Ti, and Deep Reinforcement Learning 
Framework - PyTorch. 

The experimental dataset, CAMELS (Catchment Attributes and Meteorology for 
Large-sample Studies) [19], was sourced from multiple American institutions and 
research labs, providing high-quality, multi-spatial scale daily forcing data, daily run-
off data, and fundamental metadata for 671 watersheds, including location, elevation, 
size, and shapefiles delineating watershed boundaries.  

For our study, we utilized the Daymet data from the CAMELS dataset, focusing on 
the Fish River near Fort Kent, Maine watershed, at approximately 68.58° W longitude 
and 47.24° N latitude, covering 2252.70 km2. This dataset offers daily 1 km x 1 km 
gridded coverage data for the entire continental United States, encompassing seven 
surface parameters: precipitation, shortwave radiation, vapor pressure, minimum tem-
perature, maximum temperature, day length, and runoff. 

Our training dataset spanned from January 1, 2011, to December 31, 2013, aligning 
with common practice in runoff forecasting, which often uses recent years' data for 
training. Since daily runoff data was unavailable or replaced with predicted data after 
September 30, 2014, the test dataset covered the period from January 1, 2014, to June 
30, 2014. 

3.2 Analysis of experimental results 

In our DQN model, the input state consists of continuous data from the past 7 days, 
with a size of (7, 7). The model's output represents the average runoff level of the 
entire watershed for the next day, making the action space discrete with a size of (1, 
5), where each item corresponds to the value of a runoff level category. The reward 
function is set to 1 for correctly forecasting the next day's runoff level category, and 0 
otherwise. During the DQN model initialization phase, multiple parameters were 
configured to construct the model. These parameters include the maximum training 
iterations, maximum capacity of the experience replay buffer, learning rate, difference 
in training steps for target network updates, and the probability factor for employing 
the ε-greedy algorithm. The detailed model initialization parameters are presented in 
Table 1.  

Research on Watershed Runoff Forecast             719



Table 1. DQN model initialization parameter table. 

Parameter Value Annotation 
TOTAL_STEP 100 Maximum training iterations 

MEMORY_SIZE 20 Maximum capacity of the experience replay 
buffer 

REPLACE_TARGET_ITER 10 The number of training rounds required for 
an update of the target network 

DISCOUNT_FACTOR 0.3 The discount factor 
LEARNING_RATE 0.001 Learning rate 

E_GREEDY 0.9 The probability factor for the 𝜀-greedy algo-
rithm. 

In this study, the DQN model employs a cyclic iterative training approach, where 
the neural network incrementally optimizes its parameters through repeated agent-
environment interactions. By cycling through episodes of taking actions, observing 
results, and updating parameters, the network is able to continuously learn and adapt 
to the complex variation patterns of watershed runoff over time. This iterative rein-
forcement learning method enhances the model's predictive capabilities, enabling it to 
better capture intricate hydrological dynamics and runoff generation processes. 

Additionally, we conducted comparative experiments using LSTM networks for di-
rect runoff forecasting in the research watershed. The LSTM architecture and initiali-
zation parameters were designed to match the Q-network within the DQN model, 
including identical network structure, maximum training iterations, and learning rate. 
This ensures a fair comparison between the capabilities of the models. The training 
iteration process for the standalone LSTM model is illustrated in figure 2, while the 
training iteration process for the full DQN model is depicted in figure 3. 

 
Fig. 2. LSTM training process 
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Fig. 3. DQN training process. 

From the results in Figure 2 and Figure 3, it is evident that DQN outperforms LSTM 
during the training process, achieving higher accuracy with the same number of train-
ing iterations. Furthermore, DQN achieves convergence with fewer training iterations 
compared to LSTM. This observation is further supported by the loss curves shown in 
figure 4, where the blue line represents LSTM and the orange line represents DQN. 
Throughout the training process, the descending slopes of the loss curves for both 
LSTM and DQN are similar, but DQN exhibits smaller loss fluctuations and demon-
strates a more stable behavior, consistently moving towards reducing the loss. In con-
trast, LSTM experiences more significant fluctuations in the later stages of the train-
ing iterations. 

During the testing phase, we implemented a sliding window approach to enhance 
our daily runoff predictions. Within each interval, we inputted data from the preced-
ing 7 days into both the LSTM and DQN models to make forecasts regarding the 
runoff level for the subsequent day. This systematic approach enabled us to forecast 
daily runoff for the first half of 2014. We achieved this by incrementally advancing 
the 7-day input window one day at a time, which allowed us to continuously generate 
predictions. The forecast results on the test set are shown in figure 5 and figure 6. The 
Y-axis shows the model's predicted runoff level category from 0 to 4 for the next day, 
based on quantiles of the historical maximum daily runoff. The X-axis shows the 
progression of test days in the first half of 2014. Each prediction uses the prior 7 days 
as input to forecast the next day's runoff level. 
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Fig. 4. Loss curves of LSTM and DQN during training iterations. 

 
Fig. 5. Results of the LSTM on the test dataset. 

 
Fig. 6. Results of the DQN on the test dataset. 
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The experimental results indicate that the DQN model achieved approximately 91.3% 
accuracy on the test dataset, while the LSTM model had about 85.5% accuracy. This 
demonstrates DQN significantly outperformed LSTM, with a 6.8% accuracy im-
provement in runoff level forecasting. Analyzing the errors reveals insights. Most of 
DQN's errors occurred during transitions between runoff level categories but re-
mained within one category of deviation. In contrast, LSTM had lower accuracy in 
stable and transitional periods with larger errors. Compared to DQN, LSTM struggled 
more to capture runoff level patterns, trends, and transitions. 

4 Conclusion 

In this study, we applied the DQN deep reinforcement learning method to watershed 
runoff forecasting, utilizing an LSTM network within the DQN architecture. Compar-
ative experiments between LSTM and DQN models revealed that DQN achieved 
convergence with fewer training iterations, displayed smaller and more stable errors 
during training, and outperformed LSTM with a significantly higher test accuracy of 
91.3% compared to 85.5%. Analysis of DQN's errors indicated they primarily oc-
curred during runoff level transitions, with deviations staying within a single level. 
These results highlight the potential benefits of employing deep reinforcement learn-
ing techniques like DQN for runoff forecasting, suggesting their promise in advancing 
hydrological model and prediction in watershed contexts. 
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