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Abstract. The basic mechanical parameters of rock are obtained and the creep
curves under different stress loads are obtained to reveal the creep law of layered
soft rock under different stress loads. According to the creep test results, the lin-
ear Burgers creep model is used to fit the test data. The fitting effect of the atten-
uation creep stage and stable creep stage is better, and the fitting effect of the
accelerated creep stage is poor. To describe the accelerated creep stage of layered
rock more accurately, based on the Mohr-Coulomb strength criterion, a plastic
element is introduced, which is connected in series with the linear Burgers creep
model to form an improved nonlinear Burgers creep model. The model is used to
re-fit the experimental data. The results show that the fitting effect of the accel-
erated creep stage is significantly better than that of the linear creep model. The
nonlinear Burgers creep model file is compiled by using FISH language embed-
ded in FLAC3D for numerical simulation analysis, and the creep results are com-
pared with the field monitoring data. The change rule of the two data is close,
indicating that the improved nonlinear model can more accurately describe the
creep characteristics of layered soft rock.
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1 Introduction

At present, there are some achievements in the study of rock creep characteristics test
and constitutive model at home and abroad[1-8]. A numerical method based on the
particle discrete element method is studied to describe the typical creep behavior of
phyllite, including its attenuation, stability, accelerated creep stage, and transverse iso-
tropic, according to, designed by Zhang et al[9]. The creep model and parameter inver-
sion of columnar jointed basalt are studied. Wei et al. proposed the generalized Kelvin
model, and the compression creep formula of the intermediate measuring point of the
flexible double pillow compression plate is derived [10]. The unloading creep tests of
deep sandstone under different initial stresses and water pressures were carried out by
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using the TFD-2000 rock triaxial rheological test system. The deformation characteris-
tics of rock mass in the attenuation and stable creep stages under different stresses and
water pressures were analyzed.

Based on the results of the conventional compression test and creep test of layered
soft rock, linear and improved nonlinear Burger’s creep models are compared to de-
scribe the attenuation creep, stable creep, and accelerated creep stages of rock. The
fitting of experimental data shows that the nonlinear visco-elastic-plastic model can
more accurately reflect the characteristics of the rock creep stage, and the nonlinear
creep model is closer to the actual failure characteristics of a layered soft rock tunnel
through the verification of actual engineering simulation. The research results have cer-

tain theoretical design and project guiding significance for layered soft rock tunnel en-
gineering.

2 Rock Mechanics Test

2.1 Test results of conventional mechanical characteristics test

To obtain the related parameters such as cohesion c, internal friction angle @and elas-
tic modulusEof layered soft rock, the conventional uniaxial-triaxial compression test
was carried out on the rock. The test object was layered soft rock, a total of 18 samples,
3 samples in each uniaxial group and 5 samples in each triaxial test group. The com-
pressive stress-strain curves of layered soft rock are shown in Figure 1, where the con-
fining pressures of the triaxial compression test are 3 MPa, 6 MPa, and 9 MPa, respec-
tively.
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Fig. 1. Compression stress-strain curve of typical layered soft rock

It is observed from the above rock compression stress-strain curve that the rock defor-
mation includes four stages: compaction stage, linear elastic stage, plastic failure stage,
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and brittle failure stage. Rock is a heterogeneous body with cracks, pores, and bedding
defects. When the axial pressure was applied, the internal defects of the rock were com-
pacted. With the increase of axial stress, the void ratio in the sample decreased, and the
stress-strain curve showed an upward trend. With the increase of axial stress, the rock
showed relatively obvious linear elasticity. With the further increase of axial stress, the
number of rock fractures increases gradually, and many fractures are connected. Shear
failure occurs along a certain structural plane, and the rock enters the stage of unstable
expansion. After reaching the peak strength, the rock is destroyed, and the rock still has
a certain strength after destruction. According to the uniaxial compression test, uniaxial
compressive strengtho,, triaxial compressive strength g, elastic modulus E and Pois-
son’ ratio p of rock are obtained. Then according to the Mohr-Coulomb strength crite-
rion, rock cohesion ¢ and internal friction angle ¢ are obtained. The specific test re-
sults are shown in Table 1.

Table 1. Conventional mechanical parameters of layered soft rock

03/MPa o.(0os)/MPa E/GPa u ¢/MPa @/°
0 26.95 4.53 0.26
3 38.85 6.49 0.25 4.30 46.51
6 51.84 7.42 0.24
9 82.30 8.24 0.23

2.2 Test results of creep characteristics

According to the compressive strength of the rock in Table 1, the axial load of the
uniaxial creep test is divided into 4 grades. The load of each grade is 70% ~ 85% of the
corresponding axial pressure, and the loading pressure of each grade is 18.87 MPa,
20.21 MPa, 21.56 MPa, and 22.90 MPa respectively. The creep test lasted for about 12
h at all levels, but it did not include the accelerated creep stage. The accelerated creep
stage was short, and the loading time was 36.38 h. The data were processed by the
Boltzmann superposition principle. The overall loading curve and graded loading curve
of rock under uniaxial and different confining pressures were obtained as shown in
Figures 2- 5, where T was the loading time and ¢ was the axial strain.
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Fig. 2. Overall creep loading curve
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Fig. 3. Creep curve of layered soft rock under 3 MPa confining pressure
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Fig. 4. Creep curve of layered soft rock under 6 MPa confining pressure
Sr Sr
- L L 6
. o
S~
= /’- SL17MPa
il S ——5183MPa
@ 58 48MPa
© 62.14MPa
x
2 o 9
0 10 20 30 10 0 0 2 4 6 8 10 12
time/h time/h
(a) overall loading curve (b) graded loading curve

Fig. 5. Creep curve of layered soft rock under 9 MPa confining pressure



Study on Creep Test and Constitutive Model of Layered Soft Rock 59
3 Creep model improvement and parameter identification

The linear Burgers creep model has a poor effect in describing the accelerated creep
stage of rock. In this paper, a plastic element is introduced based on the Mohr-Coulomb
criterion, and a new improved Burgers nonlinear creep model is formed in series with
the Burgers model. The visco-elastoplastic and elastoplastic properties are used to de-
scribe the partial stress and volume deformation of rock, respectively.

Through the above theoretical calculation, the creep parameters of layered soft rock
can be obtained, and the Burgers-Mohr nonlinear creep simulation is used to fit the test
parameters by Origin software. The overall fitting curve and the fourth-stage loading
fitting curve are shown only, and compared with the linear Burgers fitting curve. The
experimental data and fitting curves are shown in Figures 6-9.
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Fig. 6. The fitting curve of the uniaxial compression creep test
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Fig. 7. The fitting curve of the 3 MPa compression creep test
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Fig. 8. The fitting curve of the 6 MPa compression creep test
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Fig. 9. The fitting curve of the 9 MPa compression creep test

From the fitting results, the fitting degree of the nonlinear Burgers-Mohr creep model
is significantly higher than that of the linear Burgers creep model. Under the fourth
stage of loading, the fitting R? of confining pressure 0 MPa, 3 MPa, 6 MPa, and 9 MPa
are 0.9921, 0.9477, 0.9640, and 0.9916, respectively. Compared with the linear Burgers
creep model, the fitting degree of the fourth stage of creep under different confining
pressures increases by 7.53 %, 2.16 %, 9.30 %, and 10.82 %, respectively, which satis-
fies the fitting degree of 0.95, indicating that the improved model can more accurately
describe the accelerated creep stage of layered rock mass and is closer to the creep
condition of this kind of rock. The Burgers-Mohr nonlinear creep model can be applied
to the creep analysis of layered soft rock in the tunnel.
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4 Model application and verification

4.1 Model establishment

This simulation takes a layered soft rock tunnel as the research object. At the entrance
and exit of the tunnel, there is a layered soft rock with mudstone and sandstone. To
verify the reliability of the model parameters, numerical simulation is carried out based
on the actual project. The model is 100 m x 100 m x 100 m cube and the tunnel depth
is 70 m. The numerical simulation parameters and creep model parameters of the lay-
ered soft rock tunnel are shown in Table 2.

Table 2. Numerical simulation parameters of layered soft rock

Rock formation Elastic Cohesion The angle of Density Pois-
modulus internal fric- P/g/em3 son ra-
tion tio
E/gpa C/kpa Dl M
Layered rock 6.51 3.39 34.35 2450 0.20
Medium weath- 7.14 8.92 32 2430 0.22
ered sandstone
Weakly weath- 8.68 8.25 34 2500 0.24
ered sandstone
Anchor/steel 210 - - 7800 0.30
frame
C25 concrete 28 - - 2550 0.20

4.2  Spatial Effect of Surrounding Rock in Layered Soft Rock Tunnel
Construction

This simulation takes 3 m as excavation footage, which is divided into 34 construction
stages, i.e., 34 days. It is assumed that the excavation speed is not affected by external
factors, and 3 m is excavated stably every day. The Mohr-Coulomb constitutive model
is used to simulate the tunnel excavation without considering the time effect, and the
improved nonlinear Burgers - Mohr constitutive model is used to simulate the tunnel
excavation considering the time effect.

Taking the tunnel section DK803 + 020 as an example, without considering the time

effect, the stress-strain nephogram of tunnel excavation is shown in Figure 10.
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Fig. 10. Stress-strain nephogram without considering time effect

It can be seen from the stress nephogram that the stress concentration after tunnel
excavation is distributed at the arch foot of the tunnel. The maximum principal stress is
about 1.10 MPa, which is located at the arch foot of the tunnel. The minimum principal
stress is about 3.24 MPa, which is distributed from the arch waist to the arch foot. The
maximum shear stress appears at the arch waist, which is about 1.44 MPa. The stress
monitoring curve of the arch foot is shown in Figure 11. It can be seen from the dis-
placement nephogram that the lateral displacement is distributed at the arch waist, and
the vertical displacement is distributed at the vault and bottom of the tunnel. The dis-
placement changes of the left line and the right line of the tunnel are symmetrical, and
the maximum values of the left line displacement and the right line displacement are
about 7.80 m and 7.74 m, respectively. The maximum vault settlement is about 3.08
mm, and the maximum arch bottom uplift is about 3.90 mm. Monitoring curves of the

vault, waist, and bottom displacements are shown in Figure 12.
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Fig. 11. Stress monitoring curve of arch foot
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Spatial effect of surrounding rock in layered soft rock tunnel construction

The improved nonlinear Burgers-Mohr model is used to simulate the tunnel construc-
tion process, and the stress-strain nephogram after excavation is shown in Figure 13.
The stress monitoring curve is shown in Figure 14, and the displacement monitoring

curve is shown in Figure 15.
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From the stress nephogram, the stress is symmetrically distributed along the tunnel axis.
Different from the mechanical characteristics of surrounding rock without considering
the time effect, the maximum principal stress and minimum principal stress are located
at the arch foot, which are 1.50 MPa and 3.12 MPa respectively. The maximum shear
stress is about 1.00 MPa, located at the tunnel arch waist. Through the displacement
analysis, under the condition of considering the time effect, the maximum displacement
of the left line is about 6.28 mm, and the maximum displacement of the right line is
about 6.27 mm. The deformation of the left and right lines of tunnel excavation is sym-
metrical, the maximum settlement of the vault is about 12.00 mm, and the maximum
uplift of the arch bottom is about 7.30 mm.
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5 Conclusions

(1) The basic mechanical parameters and uniaxial-triaxial compression creep curves of
layered soft rock are obtained by mechanical properties test. The results show that the
compressive strength and elastic modulus of rock increase with the increase of confin-
ing pressure, and Poisson’s ratio tends to be stable. Based on the Mohr-Coulomb
strength criterion, the rock cohesion c is 4.30 MPa, and the internal friction angle ¢ is
46.51°. The creep characteristic curve includes the attenuation creep stage, stable creep
stage, and accelerated creep stage.

(2) The linear Burgers creep model was used to fit the test data, and the fitting effect
in the accelerated creep stage was poor. Based on the Mohr-Coulomb criterion, a plastic
element is introduced and connected with the Burgers model in series to form a new
improved Burgers nonlinear creep model. The improved model is used to fit the test
data, and the fitting R? of the creep stage is significantly increased from 0.9226 to
0.9921, which shows that the nonlinear model can describe the accelerated creep stage
of layered soft rock more accurately than the linear model.

(3) The code of improved nonlinear Burger’s creep model is written based on
FLAC?P embedded FISH language. The numerical simulation of the tunnel excavation
stage is carried out by using the parameters of data fitting. The results show that the
deformation law of the creep model tunnel is like the actual deformation law and the
numerical value of the project, indicating that the model can well reflect the creep char-
acteristics of the surrounding rock of the layered soft rock tunnel. It provides some
theoretical and technical guidance for the construction design and mechanical analysis
of similar layered soft rock tunnels.
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