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Abstract. Iron sand, a valuable mineral found in placer deposits, is difficult to 

identify and extract due to the constantly changing nature of beach placer depos-

its. Traditional visible light cameras mounted on drones are insufficient for iden-

tifying specific rocks and minerals. However, hyperspectral cameras provide 

more comprehensive assessments but can be bulky and time-consuming for data 

processing. A recent approach involving specialized multispectral bands has 

emerged as a solution to the disadvantages of hyperspectral imaging. This study 

proposes using a 6-band DJI P4 multispectral drone and Convolutional Neural 

Networks (CNN) to automatically identify the composition of mineral sand from 

the placer deposit located in Kunisaki peninsula, Japan. The combination of mul-

tispectral imaging and deep learning techniques has the potential to optimize sev-

eral aspects of the mining chain, making it an attractive area of research. This 

study aims to evaluate an efficient approach for the automatic identification of 

mineral sand composition, using a commercial drone equipped with a multispec-

tral camera, driving towards a more efficient and accurate mineral exploration 

and extraction processes for the mining industry. 
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1 Introduction 

1.1 Benefits of employing AI methods in Mineral Identification 

In recent years, the use of unmanned automated vehicles (UAVs), such as drones, for 

remote sensing in mines has become increasingly important due to the advantages such 

as the ability to cover a wide range of areas, high safety, and the ability to obtain high 

spatial resolution[1,2]. However, when it comes to identifying certain rocks or minerals 

in a mine site, a visible light camera mounted on a drone is often insufficient. This is 



because such cameras may be limited to capturing only the visible light spectrum that 

they do not collect the intrinsic characteristics of rocks and minerals beyond this range 

[3,4]. As a result, more advanced techniques and technologies are needed to address 

this limitation and enable more comprehensive assessments of mine sites. To address 

the limitations of using visible light cameras mounted on drones for mine site assess-

ments, the use of hyperspectral cameras for remote sensing has become increasingly 

prevalent. Hyperspectral imaging is already being applied in a variety of fields, includ-

ing industry, agriculture, bioscience, and remote sensing. However, the equipment re-

quired for hyperspectral imaging can often be bulky and data processing can be time-

consuming [5,6,7], which presents significant challenges. Recent research has shown 

that using a few specialized multispectral imaging bands can provide similar high sub-

ject resolving power for classifying rocks and minerals [8]. This approach involves re-

ducing the dimensionality of hyperspectral imaging by using specialized multispectral 

bands, which eliminates the disadvantages associated with hyperspectral imaging [9]. 

Previous studies [10,11,12], have also utilized a method that involves the remote col-

lection of vegetation data via a MS camera mounted on a UAV drone, in order to iden-

tify specific vegetation species. Building upon this methodology, a novel approach has 

been developed to enable the identification of rocks and minerals in large-scale areas 

with detailed field assessments. This proposed method combines MS mounted UAV 

drone technology with Convolutional Neural Networks (CNN) to automatically iden-

tify the composition of mineral sand. The combination of MS imaging and deep learn-

ing techniques has the potential to optimize several aspects of the mining chain, making 

it an attractive area of research. For this reason, this paper introduced ‘DJI P4 multi-

spectral drone’ based on the currently available industry produced spectral imaging de-

vices used in agricultural applications and environmental monitoring to identify the 

appropriate rock classifying multispectral bands. The main objective of this study is to 

evaluate an efficient approach for the automatic identification of mineral sand compo-

sition, using a commercial drone equipped with a MS camera.  

Mineral sand is a term used to describe a mineral resource consisting mainly of tita-

nium oxide minerals, such as ilmenite and rutile, with titanium (Ti) as the primary com-

ponent, and zirconium oxide minerals, such as zircon, with zirconium (Zr) as the pri-

mary component. These minerals, along with rare earths and lithium, which have been 

attracting attention in recent years, are used in various products essential to our daily 

lives. These minerals can be found in placer deposits in countries such as Australia, 

South Africa, and Sierra Leone, and iron sand is also an important constituent found in 

placer deposits. Since ancient times, iron sand has been collected in many parts of Japan 

[13], including the coast of the Kunisaki Peninsula. It is estimated that there are thou-

sands to tens of thousands of tons of iron sand buried in the Kunisaki Peninsula placer 

deposits and the black area, which is believed to be where iron sand is densely concen-

trated, is visible through aerial photography using a drone. However the mine is no 

longer in operation and has been abandoned. Unlike other types of mineral deposits, 

beach placer deposits are constantly changing due to the water flow in oceans, making 

it difficult to manage production volume and quality. 

This paper is focusing on verifying the effectiveness of this approach in identifying 

mineral compositions in placer deposits, while also discussing the preprocessing and 
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analytical techniques required for deep learning using data obtained from the MS cam-

era. Positive results from this research, utilizing a novel method that combines MS 

camera mounted drone and CNN, would aid in ascertaining the feasibility of field ap-

plications. Hence, demonstrating the effectiveness and potential of this approach, ulti-

mately leading to more efficient and accurate mineral exploration and extraction pro-

cesses in the mining industry. 

1.2 Study Area 

In this study, the experiment was conducted in the 9th Kumano mining area, which ex-

hibited the highest concentration of iron sand among several mining sites (Fig. 1).  Iron 

 

Fig. 1. Map showing the 9th Kumano magnetite iron sand placer deposits located on Kunisaki 

peninsula, Oita prefecture, Japan. Red square represents the study area within which the UAV 

drone was flown. Map acquired from: Google Earth (2023). 

sand deposits are mainly composed of sand dune sediments, and the amount of iron 

sand deposited varies significantly depending on the time period. 

 The iron sand deposits on the coast of the Kunisaki Peninsula are placers, which can 

be divided into two types: beach iron sand deposits that are washed up on the current 
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coastline by the formation process and coastal dune iron sand deposits that accumulate 

in sand dunes. The study area is beach iron sand deposit located on the eastern coast of 

the Kunisaki Peninsula, in the eastern part of Oita Prefecture, Japan (Fig. 1). The Mt. 

Futagosan volcano group, which occupies the main part of the Kunisaki Peninsula, is 

composed of a central lava dome group and volcanic debris surrounding it. The volcanic 

debris forms a dissected alluvial fan at the foot of the mountain and is mainly composed 

of pyroclastic flow deposits in the central part of the volcano and lahars in the peripheral 

part. The iron sand include plagioclase, orthoclase, quartz, pyroxene, clinopyroxene, 

hornblende, biotite, calcite, garnet, and monazite. The ore minerals are mainly com-

posed of magnetite, ilmenite, and hematite[14].  

2 Proposed system 

This study evaluate an efficient approach for the automatic identification of mineral 

sand composition, using a commercial drone equipped with a MS camera and to verify 

the effectiveness of this approach in identifying mineral compositions in placer depos-

its. On the other hand, this verification is essential for developing a system using a MS 

technique for drone-based exploration of large-scale spaces, such as mineral sand de-

posits, and identifying target minerals and other valuable minerals using aerial explo-

ration by drones. Fig. 2 shows an overview of the useful mineral broad mapping system 

by drone. The system involves capturing images of the mineral deposits using the MS 

camera mounted on the drone, and mapping the target minerals and other useful min-

erals in a way that can be easily visualized through color coding.  

 

Fig. 2. Overview of the mineral mapping system. 

MS cameras are used for aerial photography by drones. The data captured by the MS 

camera is analyzed through deep learning, CNN, to identify various minerals. Prior to 

training the AI algorithms, pre-processing of the data is conducted. Data pre-processing 

is crucial as it helps to clean the data and make it more interpretable for the algorithms. 

This brain is then generated through CNN to identify the reference/target by learning 

the spectral data of the mineral species.  
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This process, referred to as image segmentation, involves the labeling of each pixel 

in a captured image [5]. The pixels within the mask that represent the ground truth are 

labeled as target, while the unmasked pixels from the image are labeled as noise. By 

using labeled datasets, algorithms can leverage both the global and local structures of 

the data [15]. For each image, the CSV file contains labeled ground truth pixels (mag-

netite, ilmenite and so on) as well as noise pixels (beach sands). Using this data as 

input, the algorithms are subsequently trained, and the outputs pertaining to the classi-

fication capabilities of the models in deducing mineral compositions are presented. 

3 Methodology 

3.1 Multispectral Imaging 

Hyperspectral imaging has been regarded as one of the most effective methods to iden-

tify rocks and minerals based on their spectral characteristics [16]. However, previous 

research [17] has demonstrated that similar rock identification problems can be solved 

with high-accuracy outputs using multispectral imaging. Inspired by the promising 

multispectral capabilities, this paper employs a UAV drone equipped with a multispec-

tral camera (Fig. 3). The spectral sensor specifications are as follows: Blue: 450 nm ± 

16 nm, Green: 560 nm ± 16 nm, Red: 650 nm ± 16 nm, Red Edge (RE): 730 nm ± 16 

nm, Near Infrared (NIR): 840 nm ± 26 nm, which are all captured as TIFF image files. 

The drone has a 62.7° field of view, a net weight of 468 g, and an RGB camera that 

facilitates the extraction of spectral information in the visible light spectral range of 

400-700 nm as a JPG image. This makes the system effective in a wide range of elec-

tromagnetic spectra within the visible-near-infrared range (VNIR), with a total of 6 

multispectral bands. 

 

Fig. 3. The 6 bands multispectral sensor with a 62.7° field of view; [1] Blue: 450 nm ± 16 nm, 

[2] Green: 560 nm ± 16 nm, [3] Red: 650 nm ± 16 nm, [4] Red Edge: 730 nm ± 16 nm, [5] 

Near Infrared: 840 nm ± 26 nm and [6] RGB camera: 400-1000 nm represent the multispectral 

sensor capabilities. 
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3.2 Remote Sensing 

Drone technology has evolved over the years, with recent developments catering to 

specialized industrial applications. One of the advantages of UAV drones is the protec-

tion of human life as sites can be assessed from a remote area [18,19]. In addition, 

camera mounted drones aid in real time assessments of sites via visual feed. This feed 

can be in the form of real, false or manipulated colors which are preprogrammed to 

represent a certain phenomenon understood by the operator [20]. One of the image 

analysis techniques used in remote sensing is the multispectral method. This method 

takes advantage of the fact that every substance on earth reflects electromagnetic waves 

in a unique way, which is known as its spectral characteristic. By analyzing the spectral 

characteristics of a substance, its characteristics and the composition can be identified. 

While the human eye can only observe the visible range of the electromagnetic spec-

trum, multispectral cameras can continuously observe spectral characteristics in the vis-

ible, near-infrared, and shortwave infrared range (400-2500 nm) with a resolution of 

less than 10 nm. However, the trade-off of increasing the number of wavelengths with 

hyperspectral (HS) sensors is that the observation area becomes narrower and the num-

ber of sensors used in operations is limited. Consequently, the amount of observation 

data archived with HS sensors is limited compared to MS sensors, and there are many 

unobserved areas. 

As a result, other industries and academic organizations have been motivated to im-

prove and utilize aerial investigation technologies due to the significant benefits of 

high-resolution spectral imaging compared to traditional color imaging techniques, as 

such, multispectral sensors are seeing application in mineral identification procedures 

through remote sensing, as observed in several studies [21,22]. 

 

3.3  Deep Learning Network 

Deep learning techniques, particularly those using convolutional neural networks 

(CNNs), have become state-of-the-art in many applications [23], including remote sens-

ing and geotechnical engineering [24]. This is due to their ability to learn feature rep-

resentations and classify patterns in data, making them superior to traditional hand-

crafted techniques. The use of CNNs has been proposed for rock classification based 

on hyperspectral signatures. Although deep learning models require large amounts of 

data and refinement, they have shown significant success in various vision tasks 

[25,26]. 

 A typical CNNs has three main layers: an input layer where raw data is located, a 

hidden layer housing convolution layers that detect and locate localized features, and 

an output layer that presents network performance results. The hidden layer also in-

cludes a maximum pooling layer, which compresses localized feature extractions and 

reduces computational costs.  A typical architecture of a VGG 16 CNN model is shown 

in Fig. 4.  This VGG16 architecture consists of 13 convolutional layers and 3 fully 

connected layers. In the figure, the input image size is 224×224, and it becomes 7×7 

after passing through the convolutional layers. 

Development of Wide-Area Mineral Identification System             219



 

Fig. 4. An example of a VGG16 architecture consisting of 13 convolutional layers and 3 fully 

connected layers. In this diagram, the input image size is 224×224, and it becomes 7×7 after 

passing through the convolutional layers. 

4 Experiments 

4.1 Indoor Experiments, Capturing Rock’s Multispectral Signatures 

First, XRD analysis was conducted on the beach sand contained within the black sand 

layer collected from the field. The results are shown in Fig. 5, revealing the presence 

of quartz, magnetite, ilmenite, and pyroxene.  In addition to the sample collected from  

 

Fig. 5. Result of XRD analysis of the beach sand collected from 9th Kumano. 

the field, rock specimens containing quartz, albite, Anorthite, magnetite, ilmenite, Au-

gite Hornblende, and Hematite were prepared, as observed through microscopic analy-

sis (Fig. 6).  
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Fig. 6. Rock specimens of Hematite (a), Augite(b), Anorthite(c), Magnetite(d), Albite(e), Horn-

blende(f), Ilmenite(g), and quartz(h). 

Next, the prepared samples were photographed using an MS camera in a darkroom. 

The target minerals were illuminated from three directions (left, right, and behind the 

camera) using halogen lights, which provided a uniform illumination in the wavelength 

range of 400–1,000 nm, the range that the camera can capture. The main components 

of the spectral data extraction setup are shown in Fig. 7.  Although the filament part of 

the halogen light is heated to a very high temperature over time and the wavelength 

peak of the halogen shifts to a higher value, no significant impact on the acquired 
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spectral data was observed during the several hours of use, which was ignored in this 

study. The lighting position was adjusted to prevent shadows from occurring on the 

minerals. Although the illumination intensity was set to a constant level in this study, 

the exposure time was automatically adjusted by the camera, and therefore, precise il-

lumination settings were not necessary. The photographs were taken from 40 cm above 

the target. 

 

Fig. 7. Indoor experimental set-up using P4 multispectral. The drone captures MS data and 

sends it to the computer, data is then used for various types of analysis. 

4.2 Outdoor experiments, Drone Shooting 

P4 Multispectral drone equipped with an MS camera was used to capture images of the 

coastline along the Kunisaki Peninsula during the daytime. The focus of the capture 

was on the black areas where the concentration of iron sand was believed to be high. 

The images were taken at a height of 50m. Each capture produced five TIF files corre-

sponding to each spectral sensor, as well as one RGB JPG file (Fig. 8).  
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Fig. 8. Images captured by the 6 multispectral band sensors. 

5 Experimental and Analytical Results  

5.1 Data Pre-processing 

To ensure that all sensors are aimed at the same image scene, parallax error correction 

is always necessary due to the small distance between the 5 spectral sensors of the 

drone. In this experiment, feature point matching, the process of associating character-

istic features extracted from different images and correcting the parallax error, was per-

formed on five TIF images taken from different positions. Using one TIF image as a 

reference point, the positions of the remaining four images were aligned (Fig. 9). Each 

band is displayed with a color code, and the parallax error between the images has been 

successfully corrected. Subsequently, these five TIF images were stacked to create a 

data cube. The data cube has 1600 x 1300 pixels in the x and y directions and contains 

information on five bands: RED, BLUE, GREEN, RE, and NIR in the z direction. The 

parts of the data cube that show minerals were selected, and the wavelength was ex-

tracted for each pixel. In Fig. 10, 10 pixels are selected, and their respective locations, 

corresponding wavelengths, and intensities are displayed below. These data were all 

extracted as CSV files. This process extracted 10000 training data points for each min-

eral.  
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Fig. 9. Feature matching of the MS images captured. 

 

Fig. 10.    Pixels selection and their corresponding wavelengths and intensities. 

5.2 Classification via Deep Learning CNN 

We utilized a 2D CNN with a total of 21 layers (Fig. 11). Convolutional layers are used 

to extract features from input image data by performing convolutional operations using 

filters and by stacking convolutional and pooling layers, the network can identify 

stronger features in images, allowing it to accurately classify multiple complex images. 

For instance, the first line of code "convolution2dLayer([1 3],64,'Stride',1,'Padding',[0 

1])" defines a 2D convolutional layer with a kernel size of [1 3], 64 filters, a stride of 

1, and padding of [0 1] in a CNN.  

The training data for the input comprised a total of 60,000 data sets, with 10,000 data 

for each of the six mineral types The three white and colorless minerals, Quartz, Albite, 
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Fig. 11. The structure of the 2D CNN with input, hidden and output layers. 

and Anorthite, were combined and referred to as "white sands" and the other colored 

minerals, including magnetite, ilmenite, augite hornblende, and hematite, were trained 

with their original names. Based on the five wavelengths of each mineral obtained from 

the MS camera, a model (brain) for identifying the minerals, referred to as MSdatanet, 

was trained. Fig. 12. Illustrates the training progress and the confusion matrix of the 

MSdatanet model. A confusion matrix is a table that summarizes the classification re-

sults by comparing the predicted and true labels of a machine learning model. For ex-

ample, 90.2% of the initial input magnetite datasets (for 5-bands) were correctly clas-

sified as magnetite. On the other hand, the remaining 9.8% was incorrectly classified 

as augite (1.5%), hematite (0.5%), hornblende (0.6%), ilmenite (0.1%), and white sands 

(0%). As a result, the brain that can classify six types of minerals with a validation 

accuracy of 79.65% was obtained. 
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Fig. 12. Training progress and the confusion matrix of the trained MSdatanet model. 
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Next, the ability of MSdatanet to identify five types of colored minerals in an image 

was verified using a color map display. In this experiment, since the minerals being 

captured were already known, it was expected to reveal how accurate the MSdatanet 

model can identify the minerals. Each pixel is colored to correspond to the identified 

mineral(Fig. 13). From this figure, it is evident that MSdatanet model successfully dis-

tinguishes between the five minerals and the background. However, the identification 

of the five minerals is not very accurate, with most being identified as hornblende or 

augite. On the other hand, the part of magnetite is assigned the correct color of orange. 

This matches the learning results mentioned earlier, as the identification of hornblende 

and augite was difficult while magnetite was identified with almost 90% accuracy. 

Therefore, while this model has difficulty in identifying colored minerals, it is excellent 

as a model for identifying magnetite. 

 

Fig. 13. The result of identifying five minerals using MSdatanet. 

Finally, we used the MSdatanet model to identify minerals in sand samples collected 

from Kunisaki Peninsula, the 9th Kumano area. In contrast to the previous experiment, 

it was unknown which part of the beach sand in the sample corresponded to each min-

eral. In the upper right and lower left, a coin and a key were placed for feature matching, 

and the sand collected from the site covers the entire image. Similarly, to the previous 

experiment, each pixel is colored according to the mineral identified (Fig. 14). The coin, 

key, and background are clearly distinguished from the sand, and each mineral identi-

fied in the sand is assigned a specific color. Most of the lower left part of the figure is 

colored orange, indicating that magnetite is distributed in large quantities, while other 

parts are identified as containing augite and hornblende. Based on the XRD analysis 

results in section 4.1, the mass ratio of Fe is about 25%, so this result seems reasonable. 

Therefore, the MSdatanet model is capable of identifying magnetite among the miner-

als captured by P4 multi and identifying magnetite from the 9th  Kumano sand sample. 
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Fig. 14. The result of identifying 9th Kumano sample using MSdatanet. 

6 Discussion 

6.1 Application of CNN in Drone Captured Multispectral Images 

In section 5.2, it was demonstrated that CNN-based analysis of MS images can effec-

tively identify magnetite. In this paper, we aimed to verify the usefulness of a MS cam-

era-equipped drone and tested the mineral identification capability by feeding the aerial 

images captured over the 9th Kumano area on the Kunisaki Peninsula to MSdatanet. 

As shown in Fig. 15, most of the areas were classified as white sands or hornblende, 

with some spots identified as magnetite. While the mineral distribution in the 9th Ku-

mano area is not clear, it is unlikely that there are significant errors in the classification 

results, considering the XRD analysis results in section 4.1 showing that most minerals 

are white sands or hornblende. However, it should be noted that the experiments in 

section 5.2 were conducted in an ideal indoor environment, and there may be differ-

ences in data processing and imaging methods compared to outdoor drone imaging, 

where the pixel resolution may also differ. 

Moreover, since we used a pre-existing drone with an MS camera for the experi-

ments, the bands used in imaging could not be selected. For instance, Fig. 16 compares 

the waveform when augite is correctly identified as augite and when it is mistakenly 

classified as hematite. While the overall shape of the waveform is similar, there are 

differences in the spectral absorption levels around bands 2-3, which likely contributed 

to the different classification results.  

Therefore, by identifying and selecting the bands that strongly affect mineral identi-

fication, it may be possible to develop an MS camera-equipped drone specialized in 

identifying specific minerals. In future studies, it is necessary to investigate the bands 

that strongly affect the identification of magnetite and ilmenite and explore how to deal 

with differences in sunlight conditions and resolutions. 
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Fig. 15. Mineral classification results of the aerial photo using the MSdatanet model. 

 

Fig. 16. Comparison of the waveforms when the MSdatanet model correctly identified augite as 

augite, and when it misclassified augite as hematite.  

7 Conclusions 

This study aims to evaluate an efficient approach for the automatic identification of 

mineral sand composition, using a commercial drone equipped with a MS camera and 

to verify the effectiveness of this approach in identifying mineral compositions in placer 

deposits. This verification is essential for developing a system using a MS technique 

for drone-based exploration of large-scale spaces, such as mineral sand deposits, and 

identifying target minerals and other valuable minerals using aerial exploration by 

drones.  

The MS camera captures images of mineral deposits, which are analyzed using CNN 

to identify various minerals. Pre-processing of the data is conducted prior to training 

the AI algorithms. The process involves image segmentation, labeling each pixel in a 

captured image. XRD analysis was conducted on the beach sand collected from the 

field, revealing the presence of quartz, magnetite, and ilmenite. Rock specimens 
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containing various minerals were prepared and photographed using an MS camera in a 

darkroom, with the target minerals illuminated from three directions using halogen 

lights. The lighting position was adjusted to prevent shadows from occurring on the 

minerals, and photographs were taken from 40 cm above the target. In addition, a drone 

equipped with an MS camera captured images of the coastline of the Kunisaki penin-

sula.  

Next, feature point matching corrected parallax errors among five TIF images, which 

were then stacked to create a data cube with information on five bands. Mineral data 

was selected from the cube, and wavelengths were extracted for each pixel as CSV 

files. A 2D CNN with 21 layers was utilized to classify the minerals. This brain, 

MSdatanet, was trained on 60,000 data sets of six mineral types and achieved a valida-

tion accuracy of 79.65%. While the model struggled to identify colored minerals, it was 

able to identify magnetite with 90% accuracy. When tested on sand samples from 9th 

Kumano, MSdatanet identified that the sample collected consisted largely of magnetite, 

hornblende, and Augite. Overall, MSdatanet seems a promising model for identifying 

magnetite in sand samples using MS imaging. 

Finally, verification was made to test its mineral identification capability by feeding 

the aerial images captured over the 9th Kumano area to the MSdatanet model. The re-

sults showed that most of the areas were classified as white sands or hornblende, with 

some spots identified as magnetite. However, the experiments were conducted in an 

ideal indoor environment, and there may be differences in data processing and imaging 

methods compared to outdoor drone imaging, where the pixel resolution may also dif-

fer. It will be necessary to develop an MS camera-equipped drone specialized in iden-

tifying specific minerals by identifying and selecting the bands that strongly affect min-

eral identification. Future studies need to investigate the bands that strongly affect the 

identification of magnetite and ilmenite and explore how to deal with differences in 

sunlight conditions and resolutions. 
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