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Abstract. Fatigue strength is one of the core principles for designing me-

chanical components. It has been a constant concern for engineers, as 

mechanical failure occurs due to loading exceeding the fatigue strength. 

This concern has led to a necessity to develop new approaches to estimate 

the reliability of mechanical components. The conventional method that 

is used to test fatigue strength is the staircase method. However, the stair-

case method’s ability to calculate fatigue strength is potentially unrelia-

ble. The bias and scatter associated with fatigue testing shows the limita-

tions of fatigue strength estimation when the staircase approach is used. 

The conventional methods of fatigue limit determination also have key 

flaws, in that they are subjective, time consuming, and costly. This re-

search aims to develop a method that would reliably estimate the fatigue 

strength of materials, whilst using a lower amount of test results. The 

present study is intended to formulate and analyze a proposed method of 

estimating fatigue strength by utilizing a smaller number of tests. The 

aforementioned method that this paper aims to formulate, mainly focuses 

on a probabilistic estimation based on the Maximum Likelihood Proce-

dure. The proposed method is applied to existing fatigue test data and its 

effectiveness is compared with other methods. 

Keywords: Fatigue strength, Maximum likelihood estimation, S-N 

curve. 

1 Introduction 

The use of ferrous materials allowed for more complex engineering structures in the 

1900’s. The advancements made in material science allowed for structures and mechan-

ical components such as: train axles, railways, mine shaft hoists, etc. These mechanical 

components and structures were designed to resist high mean loads, yielding, and en-

vironmental conditions. However in the 19th century, structural failures were observed  
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occurring in metals subject to cyclic loads far below their yield strength. Later on, Pon-

celet used the term “fatigue” when referring to these failures [1]. In the 1850s, Wöhler 

conducted excessive amounts of fatigue tests on smooth and notched railway axles. 

Wöhler’s work introduced the use of S-N diagram which is a plot of failure to a given 

stress level to number of cycles. His work on the S-N diagram was the first to charac-

terize fatigue in a systematic manner [2].  

    The use of the S-N diagram led to the concept of the fatigue strength (i.e. fatigue 

limit); which is a theoretically estimated stress range in that fatigue failure is resisted 

by the material. After the advancements made by Wöhler, the S-N curve was univer-

sally acknowledged as a means of accurately characterizing fatigue. Basquin later pro-

pose empirical laws that characterized S-N curves [2]. His work highlighted the fact 

that if stress and number of fatigue cycles were plotted as a log-log, the result would be 

a linear relationship. As further research was conducted on fatigue, many advancements 

in fatigue research were achieved; including, Miner’s linear damage hypothesis, 

Weibull’s work on the statistics involved with fatigue [3, 4].  

    Despite the extensive amount of research and advancements made, the true nature of 

fatigue remains unknown. The accurate estimation of fatigue strength becomes more 

important in the modern industries, especially jet engine, in which mechanical compo-

nents are operated in high frequency cycle. To ensure safety without failure during the 

life span of mechanical components, the fatigue strength of mechanical material should 

be accurately determined. However, due to the very high cost and long period to per-

form fatigue tests with Mega to Giga cyclic loadings, a probabilistic method for the 

estimation of fatigue strength is inevitable, which utilizes only the small number of test 

specimen.  

    In this study, based on the characteristics of fatigue test for fatigue strength, a prob-

abilistic method is proposed based on the maximum likelihood method and applied to 

simulated fatigue test data sets.  

2 Fatigue Strength 

2.1 Characterization of Fatigue 

The phenomena of fatigue is defined by Fine and Chung as “the progressive, confined 

to a small area, and continuing structural damage that takes place when a material is 

under repeated strains at insignificant stresses that are less than the actual yield strength 

of the material” [5]. Engineering structures are frequently under a myriad of forces and 

loads. The repeated or cyclic loads that they are subjected to result in microscopic dam-

age to the structure. This microscopic damage eventually accumulates until a macro-

scopic crack appears. To this extent, fatigue should be viewed as both a material phe-

nomenon and an engineering problem [6]. From a metallurgical standpoint, Fine and 

Chung [5] specify that the entire process of mechanical failure caused by fatigue is as 

follows: 

i. Cyclic loading causing repeated plastic deformation, initiating the first crack 

ii. Initiation of micro cracks 

iii. Propagation or growth of microscopic cracks 
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iv. Propagation of macroscopic cracks 

v. Failure of part due to fatigue 

   

The S-N curve plots the number of cycles until a specimen fails (Nf) against the 

cyclic stress amplitude level (S) at the failure. To draw the S-N curve for a material at 

least 3 test specimen should be tested at one stress level. The actual line provided in S-

N diagrams are generated using the mean of the data from the various tests conducted.     

The S-N curve shows a certain noticeable stress level that fatigue failure will not occur. 

This stress level is defined as the fatigue strength. Nelson defines the fatigue limit as 

“the stress level at which the fatigue life becomes a prescribed long but finite life” [7]. 

Most ferrous and titanium alloys have a certain fatigue strength, while most nonferrous 

metals appear to not. In materials that exhibit fatigue limits, the stress level that corre-

sponds to failure at 106 or 109 cycles on the S-N diagram is regarded as the fatigue 

strength. 

 

2.2 Scatter in Fatigue Strength 

Fatigue lifetimes of similar specimens with the same material can be significantly var-

ied. The test data acquired from fatigue testing is subject to a significant amount of 

scatter. There are many sources that influence the scatter. Sources such as surface fin-

ish, environmental causes, and specimen discrepancy have proven to influence the 

amount of scatter. Even with extremely controlled conditions when conducting fatigue 

testing, scatter is still present in testing data.  

   Scatter has been proven to increase in low stress amplitude testing. At a high stress 

amplitude, surface conditions and localized conditions of grain boundaries are less im-

portant. However, at low stress amplitude values, micro cracks propagate to structural 

barriers in the material. As a result of this scatter, it is crucial for fatigue test results to 

be fitted to a probability distribution. In order to predict the fatigue life of materials, it 

is important to assume a probabilistic distribution type that accurately reflects the un-

certainties of the fatigue life.  

    In Fig. 1, the random variable of the probabilistic distribution at each stress amplitude 

is the number of cyclic loading while the random variable around fatigue strength is 

stress amplitude at a specified number of cyclic loading. An average fatigue strength is 

determined as the stress amplitude with the failure probability of 50%. The fatigue 

strengths corresponding to the 5% and 95% failure probability are determined accord-

ing to the probability distribution of fatigue strength.  
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Fig. 1. Variation of scatter band at high and low stress amplitudes [8]. 

 

3 Fatigue Strength Estimation Method 

3.1 Staircase Method 

Generally, for the estimation of fatigue strength estimation the staircase testing method 

has been used. It was first introduced by Dixon and Mood [8]. In the staircase method, 

specimens are tested one after the other, starting from an initial stress level estimated 

to be the median fatigue strength. The stress level is then increased or decreased for the 

next specimen in the series. Whether the stress level is increased or decreased is deter-

mined by the results of the previous specimen test result. When the previous specimen 

fails, the stress level for the next specimen is decreased; alternatively when the previous 

specimen survives until the specified number of cycles, the stress level is increased. 

This test process is carried out until the last specimen. The step size of the test is chosen 

to be equal for each iteration, as this allows for statistical analysis for determination of 

the mean and standard deviation [9]. 

 

 

Fig. 2. Staircase method illustration [9]. 
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The staircase method was initially thought to require an upwards of 60 specimen for 

parameter estimates [9]. It was later proven that sufficient estimates can be made using 

fewer test samples [10]. Currently the Japanese Society of Mechanical Engineers 

(JSME) uses the staircase method for the determination of the fatigue limit for S-N 

curve determination [11]. 

But the drawbacks of the staircase method for fatigue strength estimation is that scatter 

is not adequately accounted for. For example, if a faulty specimen fails early, the itera-

tion process will be increased and the results would be flawed. Another disadvantage 

is the undetermined step size for each test. It is identical for increase and decrease of 

stress level. This would result in more specimens required in the case of scatter. 

 

3.2 Proposed Method 

Probability Density Function. The fatigue test of each specimen at any stress ampli-

tude can be modeled as the Bernoulli sequence. Each test is independent to each other 

and the output random variable (x) of a trial is either a survival (runout) or a failure at 

the cyclic number of fatigue lifetime. However, because the failure probability of spec-

imen changes depending on each stress amplitude level, Si, the probability mass func-

tion is expressed as Equation 1.  

 

  𝐹(𝑆𝑖)               𝑖𝑓 𝑥 = 1 

𝑓(𝑥; 𝐹(𝑆𝑖)) = 1 − 𝐹(𝑆𝑖)       𝑖𝑓 𝑥 = 0                                            (1) 

 0                     otherwise 

Maximum Likelihood Function. The principles of the maximum likelihood estima-

tion are based on the maximization of the likelihood function. For a set of random var-

iables x1, ···, xn from a distribution, assuming the distribution depends on a parameter 

θ, where θ is either a real-valued unknown parameter or a vector of parameters. For 

every random sample that was observed x1, ···, xn, a likelihood function is defined such 

as: 

𝑓(𝑥1, ⋯ , 𝑥𝑛| 𝜃) = 𝑓(𝑥1| 𝜃) ⋯ 𝑓( 𝑥𝑛| 𝜃)                           (2) 

    The likelihood function above is always dependent on the unknown parameter θ and 

is denoted as 𝐿(𝜃).  For any given data x1, ···, xn, considerations are made to determine 

a value of θ for which the likelihood function 𝐿(𝜃) is a maximum. For simplicity, max-

imizing the likelihood function 𝐿(𝜃) is equivalent to maximizing log 𝐿(𝜃) because it 

is the monotonic increasing function of the likelihood function. The log 𝐿(𝜃) is defined 

as the log likelihood function and denoted as: 

𝑙𝑜𝑔 𝐿(𝜃) = 𝑙𝑜𝑔 ∏ 𝑓(𝑥𝑖|𝜃)𝑛
𝑖=1 = ∑ 𝑙𝑜𝑔𝑓(𝑥𝑖|𝜃)𝑛

𝑖=1                      (3) 

The maximization of Equation 3 with respect to the parameter θ results in the maxi-

mum likelihood estimation. 
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Parameter Estimation Using Maximum Likelihood Function. Using the Bernoulli 

random variable, the probability density function of Equation (1), and the maximum 

likelihood function (2), the maximum likelihood function for fatigue strength is formu-

lated as Equation (4). The maximum likelihood estimation provides reasonable estima-

tions of the unknown parameter θ. As well as an increase in unbiased minimum vari-

ance estimators as sample size is increased. 

𝐿 = ∏ [𝐹(𝑆𝑖)]𝑥𝑖𝑛
𝑖=1 [1 − 𝐹(𝑆𝑖)]1−𝑥𝑖                               (4) 

where, 𝑆𝑖 is stress amplitude for which a specimen 𝑖 is subjected; 𝐹(𝑆𝑖) represents the 

failure probability of at stress amplitude of 𝑆𝑖; 𝑥𝑖 is a value equal to 1 or 0 depending 

on the survival or failure of the specimen 𝑖; and 𝑛 is the total number of test results.     

    Assuming the log-normal distribution for fatigue strength, 𝐹(S) take the analytical 

form: 

𝐹(𝑆) = Φ (
𝑙𝑛(

𝑆

𝑐
)

𝜁
)                                               (5) 

where, S represents stress amplitude; Φ(∙) is the standardized normal distribution func-

tion. The two parameters 𝑐 and 𝜁 in Equation 5 satisfy the equations to maximize 𝑙𝑛 𝐿 

and can be determined from Equation 6.  

𝑑 ln 𝐿

𝑑𝑐
=

𝑑 ln 𝐿

𝑑𝜁
= 0                                                (6) 

4 Results from Proposed Method 

4.1 Simulation Cases 

The application of the proposed method to determine the fatigue strength using a sim-

ulated data set was performed. Though a number of fatigue tests are needed to deter-

mine fatigue strength through the staircase method, only six simulated data sets are 

used in this paper to verify the effectiveness of the proposed method. Table 1 and 2 

shows the simulated data of two cases. Each fatigue test data is simulated assuming at 

the fatigue lifetime N=106 cycle numbers. The last column of each table identifies the 

failure or survival of each test specimen at N=106. The only difference between two 

tables is the result of the test number 6. In Case 1, the test specimen failed at the stress 

amplitude of σ =400 MPa, while it survived in Case 2. Thus at each stress amplitude 

the number of failure and survival is the same. But at σ =400 MPa, the number of failure 

in Case 1 is one and that of survival is two and in Case 2, vice versa.   

Table 1. Case 1: Six simulated fatigue test data (N=106). 

Test No. Stress amplitude 

(MPa) 

Number of cyclic load-

ing 

1-Failure, 0-Survival 

1 420 106 Failure 

2 400 106 Survival 

3 380 106 Failure 
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4 360 106 Survival 

5 400 106 Failure 

6 400 106 Survival 

Table 2. Case 2: Six simulated fatigue test data (N=106). 

Test No. Stress amplitude 

(MPa) 

Number of cyclic load-

ing 

1-Failure, 0-Survival 

1 420 106 Failure 

2 400 106 Survival 

3 380 106 Failure 

4 360 106 Survival 

5 400 106 Failure 

6 400 106 Failure 

 

4.2 Results and Discussion 

The results from applying the proposed method to determine the fatigue strength are 

shown in Table 3 and Fig. 3. Table 3 compares the fatigue strength at the failure prob-

ability of 50% of each case and standard deviation of each case. Fig. 3 shows the cu-

mulative distribution function from each case. As assumed earlier, the probabilistic dis-

tribution of fatigue strength is lognormal distribution.  

The fatigue strength with failure probability of 50% of Case 1 is 395.03 MPa, while 

that of Case 2 is 381.33 MPa. The difference in standard deviation of two cases is 13.35 

MPa, almost the same as the difference in the fatigue strength at Pf = 50%. But the 

difference in the standard deviation is more significant. The standard deviation of Case 

2 is 55% greater than that of Case 1. It is caused by the result of the specimen No. 6 in 

Case 2. The failure at σ =400 MPa in Case 2 make the cumulative distribution function 

curve steeper than that of Case 1 and results in large standard deviation. This influence 

caused by the result of one specimen cannot be quantified or barely observed when the 

staircase method is adopted to determine fatigue strength.  

Table 3. Fatigue strength at Pf = 50% and standard deviation. 

Case Fatigue strength (MPa) at Pf  = 

0.5 

Standard deviation (MPa) 

1 395.03 37.64 

2 381.33 24.29 
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Fig. 3. Results from simulation cases.  

5 Conclusion 

To avoid a fatigue failure of components under cyclic loading, the fatigue strength of a 

material or the components should be known. The fatigue strength from fatigue tests 

shows scatter and it is necessary to adopt probabilistic concept to determine the distri-

bution of fatigue strength. At the fatigue lifetime cycle numbers, the fatigue test results 

has only two outcomes, either failure or survival. So the Bernoulli sequence can be 

adopted at each stress amplitude. To estimate the fatigue strength, the Bernoulli random 

variable is formulated into the maximum likelihood function. The fatigue strength dis-

tribution is assumed as the lognormal distribution and determined at the failure proba-

bility of 50%. The fatigue strength of different failure probability percentiles, i.e. 5% 

and 95% can be found easily from the lognormal distribution. The proposed method 

can be used for the small number of fatigue test data and also it can be used in designing 

fatigue test scenarios.  
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