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ABSTRACT
The architecture of a neural network is given by a quiver, and the choice of weights (which can be numbers or even matrices) may
be interpreted as a framed representation of that quiver. Armenta and Jodoin observed that the network function is invariant under
certain rescaling operations. This led them to introduce moduli spaces of framed representations of network quivers as a new tool
for investigating the theoretical foundations of machine learning. Geometric invariant theory tells us that we need to determine
semistable and stable framed representations to get some basic information about the moduli spaces. This task was performed by
Armenta, Brüstle, Hassoun, and Reineke. In this note, we will give an alternative proof of this basic result. We will work directly
on the space of framed representations instead of taking a detour via some space of unframed representations. The main tool is the
Hilbert–Mumford criterion from geometric invariant theory.
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INTRODUCTION
A (feed forward) neural network is composed of a

network quiver 𝑄, activation functions, and weights. The
quiver 𝑄 consists of a finite set 𝑉 of vertices and a finite
set 𝐸 of arrows between these vertices and describes
the architecture of the network. Inside 𝑉 , we have the
disjoint sets 𝐼 and 𝑂, consisting of the input and output
vertices, respectively. The remaining vertices, i.e., the
vertices of 𝑉ℎ := 𝑉 \ (𝐼 ⊔ 𝑂) are the hidden vertices.
For each hidden vertex 𝑣 ∈ 𝑉ℎ, there is an activation
function 𝑓𝑣 , such as, e.g., the rectifier.1 Last but not
least, a weight 𝑤𝑒 is chosen for each arrow 𝑒 ∈ 𝐸 . In
the setting of neural networks, the data 𝑓𝑣 , 𝑣 ∈ 𝑉 , and
𝑤𝑒, 𝑒 ∈ 𝐸 , are real. In this note, we will work with their
complex counterparts. A neural network comes with a
network function

𝛹 : ℂ#𝐼 −→ ℂ#𝑂 .

The training of a network usually just modifies the
weights and yields a new network function. The weights
form the complex vector space

𝑅 :=
⊕
𝑎∈𝐸

ℂ.

1One may keep track of the activation functions by adding a loop
at each hidden vertex in the network quiver, but we will not do this,
here.

The group
𝐺 :=

∏
𝑣∈𝑉

ℂ★

acts linearly on 𝑅 via

𝐺 × 𝑅 −→ 𝑅(
(𝑔𝑣 , 𝑣 ∈ 𝑉), (𝑤𝑒, 𝑒 ∈ 𝐸)

)
↦−→
(𝑔𝑡 (𝑒) · 𝑤𝑒 · 𝑔−1

𝑠 (𝑒) , 𝑒 ∈ 𝐸).

This action restricts to a linear action of the group

𝐺 :=
∏
𝑣∈𝑉ℎ

ℂ★

on 𝑅. It is a basic observation of Armenta and Jodoin
(Corollary 5 in [2]) that the network function is invariant
under the action of 𝐺. To make the statement of Armenta
and Jodoin more precise, we need to introduce the
moduli space

M := 𝑅//𝐺.

It is the categorical quotient of 𝑅 by the action of 𝐺

in the category of (affine) algebraic varieties. (We will
come back to this below.) Now, Armenta and Jodoin
construct a map

𝛹 : M −→ ℂ#𝑂

which does not depend on the weights and a map

𝜑 : ℂ#𝐼 −→ M,
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such that the network function factorizes as

𝛹 =𝛹 ◦ 𝜑.

Looking at the vector space 𝑅 as an affine variety
basically means that we endow 𝑅 with the so-called
regular functions that are given as polynomials in the
coordinate functions 𝑥 𝑓 , 𝑓 ∈ 𝐸 , with

𝑥 𝑓 : 𝑅 −→ ℂ

(𝑤𝑒, 𝑒 ∈ 𝐸) ↦−→ 𝑤 𝑓 , 𝑓 ∈ 𝐸.

The ℂ-algebra of regular functions of 𝑅 is denoted by
ℂ[𝑅]. When trying to form the quotient, it makes sense
to look at the regular functions which are constant on
all 𝐺-orbits, i.e., at the elements of the ℂ-algebra

ℂ[𝑅]𝐺 :=
{
𝐹 ∈ ℂ[𝑅] | ∀𝑔 ∈ 𝐺, ∀𝑆 ∈ 𝑅 :

𝐹 (𝑔 · 𝑆) = 𝐹 (𝑆)
}
.

By a famous result of Hilbert’s, ℂ[𝑅]𝐺 is the algebra
of regular functions of an affine algebraic variety that
we shall denote by 𝑅//𝐺. Furthermore, the inclusion
ℂ[𝑅]𝐺 ⊂ ℂ[𝑅] is realized by a unique map

𝜋 : 𝑅 −→ 𝑅//𝐺

of algebraic varieties. The pair (𝑅//𝐺, 𝜋) is the categor-
ical quotient. It is characterized by a certain universal
property which makes it unique up to some canonical
identifications. The map 𝜋 separates closed orbits in 𝑅.
However, there often do exist non-closed orbits. Each
non-closed orbit 𝛺 contains exactly one closed orbit 𝛺◦
in its closure, and the orbit 𝛺 is mapped to the same
point as the closed orbit 𝛺◦.

In view of the above result of Armenta and Jodoin
and the general complications caused by non-closed
orbits, it is necessary to study the map 𝜋 : 𝑅 −→ M =

𝑅//𝐺 more closely. In geometric invariant theory, one
distinguishes the following points in 𝑅:

• A point 𝑆 ∈ 𝑅 is a nullform, if 0 is contained in
the closure of the 𝐺-orbit of 𝑆. (As noted above,
this means 𝜋(𝑆) = 𝜋(0).)

• A point 𝑆 ∈ 𝑅 is semistable, if it is not a nullform,
i.e., if 0 is not contained in the closure of the orbit
of 𝑆.

• A point 𝑆 ∈ 𝑅 is stable, if the orbit of 𝑆 is closed
and the stabilizer of 𝑆 is finite. (If 𝑉ℎ ≠ ∅, then
𝑆 is semistable.)

There exists an open subset 𝑉 ⊂ M, such that 𝑈 :=
𝜋−1 (𝑉) ⊂ 𝑅 is the set of stable points. Since 𝜋 separates
closed orbits, every fiber of the map

𝜋 |𝑈 : 𝑈 −→ 𝑉

consists exactly of one orbit (of a stable point). So,
the open subset 𝑈 is a 𝐺-invariant open subset of 𝑅,
such that one may endow the set of 𝐺-orbits in 𝑈 in
a natural way with the structure of an algebraic variety.
(The set 𝑃 ⊂ 𝑅 of all points of 𝑅 whose 𝐺-orbit is closed

contains 𝑈, but is, in general, not an open subset of 𝑅

and, thus, not in a natural way an algebraic variety. For
this reason, the set 𝑃 plays only an auxiliary role.) These
phenomena explain the significance of stable points.

The datum of weights (𝑤𝑒, 𝑒 ∈ 𝐸) is a representation
of the network quiver 𝑄 whose dimension vector has
only ones as entries. More generally, one may allow ar-
bitrary dimension vectors (compare [1]). This means that
we fix, for each vertex 𝑣 ∈ 𝑉 , a positive integer 𝑑𝑣 and
look at tuples (𝑟𝑒, 𝑒 ∈ 𝐸) where 𝑟𝑒 is a (𝑑𝑡 (𝑒) × 𝑑𝑠 (𝑒) )-
matrix, 𝑒 ∈ 𝐸 . The characterization of the semistable
points in this framework follows from a general result
of Halic and Stupariu (Theorem 1.1 in [5]). Section 3
in [1] gives a characterization of the semistable as well
as of the stable points.2 To put this into perspective, the
case when 𝐼 and 𝑂 are both empty is the classical case,
and the semistable and stable points in this context are
well-known (see [7], [6], and [10], p. 75ff, for different
discussions). Now, both the paper [5] and the paper
[1] contain techniques for modifying the quiver 𝑄 to a
quiver 𝑄′, such that the problem with non-empty 𝐼 and
𝑂 for 𝑄 is equivalent to the problem for 𝑄′ with empty
𝐼 and 𝑂. Though this so-called deframing procedure
is quite elementary, it is not completely natural. For
instance, a stable point 𝑆 in 𝑅 has, by definition, a
finite stabilizer. Its associated representation 𝑆′ in the
corresponding space 𝑅′ has a one-dimensional stabilizer
in the corresponding symmetry group.

On the other hand, the Hilbert–Mumford criterion is
the central tool of geometric invariant theory for finding
the semistable and the stable points. In this note, we
will directly apply it on 𝑅 to reprove Theorem 2.9. The
advantage of this direct approach is that we need only
the most basic notions from the representation theory of
quivers. This might make this fundamental result more
accessible to people who are mainly interested in neural
networks. Of course, we still need the tools of algebraic
geometry which are necessary to study quotients. (These
are also used in [1].)

1. REVIEW OF REPRESENTATIONS OF
FRAMED QUIVERS

A quiver is a quadruple 𝑄 = (𝑉, 𝐸, 𝑠, 𝑡), consisting of
finite sets 𝑉 and 𝐸 and maps 𝑠, 𝑡 : 𝐸 −→ 𝑉 . We will call
the elements of 𝑉 vertices and the elements of 𝐸 arrows
or oriented edges. For an arrow 𝑒 ∈ 𝐸 , the vertex 𝑠(𝑒) is
the source and the vertex 𝑡 (𝑒) the target of 𝑒. So, we will
think of 𝑒 as an arrow pointing from 𝑠(𝑒) to 𝑡 (𝑒). Let
𝑛 ≥ 1. Then, a path of length 𝑛 is a tuple 𝑝 = (𝑒1, ..., 𝑒𝑛)
of arrows, such that 𝑡 (𝑒𝑖) = 𝑠(𝑒𝑖+1), 𝑖 = 1, ..., 𝑛 − 1.3

We call 𝑠′ (𝑝) := 𝑠(𝑒1) the source of 𝑝 and 𝑡′ (𝑝) :=
𝑡 (𝑒𝑛) the target of 𝑝. An oriented cycle is a path 𝑝 with
𝑠′ (𝑝) = 𝑡′ (𝑝) and a loop an oriented cycle of length
one. We will suppose that we have a decomposition 𝑉 =

2The words semistable and stable do not appear in Section 3 of [1].
So, one has to go back to the definitions and the constructions given
in [1] to see this.

3So, a path of length one is just an arrow.
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𝑉𝑢 ⊔𝑉ℎ into non-empty subsets. The vertices 𝑣 ∈ 𝑉𝑢 are
said to be unmarked and the vertices 𝑣 ∈ 𝑉ℎ hidden.
In pictures, we will draw unmarked vertices as circles
and hidden vertices as dots. We call 𝑄 = (𝑉𝑢, 𝑉ℎ, 𝐸, 𝑠, 𝑡)
a framed quiver. The hidden subquiver of 𝑄 is 𝑄 =

(𝑉ℎ, 𝐸ℎ, 𝑠 |𝐸ℎ
, 𝑡 |𝐸ℎ

) with 𝐸ℎ := { 𝑒 ∈ 𝐸 | 𝑠(𝑒) ∈ 𝑉ℎ ∧
𝑡 (𝑒) ∈ 𝑉ℎ }.

Let 𝑘 be a field. As usual, a representation of 𝑄 is
a tuple (𝑊𝑣 , 𝑣 ∈ 𝑉, 𝑟𝑒, 𝑒 ∈ 𝐸), consisting of 𝑘-vector
spaces 𝑊𝑣 , 𝑣 ∈ 𝑉 , and 𝑘-linear maps 𝑟𝑒 : 𝑊𝑠 (𝑒) −→
𝑊𝑡 (𝑒) , 𝑒 ∈ 𝐸 . Given representations (𝑊1

𝑣 , 𝑣 ∈ 𝑉, 𝑟1
𝑒, 𝑒 ∈

𝐸) and (𝑊2
𝑣 , 𝑣 ∈ 𝑉, 𝑟2

𝑒, 𝑒 ∈ 𝐸) with 𝑊1
𝑣 = 𝑊2

𝑣 , 𝑣 ∈ 𝑉𝑢, a
homomorphism is a collection (𝜑𝑣 , 𝑣 ∈ 𝑉ℎ) of 𝑘-linear
maps 𝜑𝑣 : 𝑊1

𝑣 −→ 𝑊2
𝑣 , 𝑣 ∈ 𝑉ℎ, such that, setting 𝜑𝑣 :=

id𝑊1
𝑣
, 𝑣 ∈ 𝑉𝑢, the relation

𝜑𝑡 (𝑒) ◦ 𝑟1
𝑒 = 𝑟2

𝑒 ◦ 𝜑𝑠 (𝑒)

holds, for all arrows 𝑒 ∈ 𝐸 . A subrepresentation of a
representation (𝑊𝑣 , 𝑣 ∈ 𝑉, 𝑟𝑒, 𝑒 ∈ 𝐸) is a collection
𝐴 = (𝐴𝑣 , 𝑣 ∈ 𝑉) of 𝑘-linear subspaces 𝐴𝑣 ⊆ 𝑊𝑣 ,
𝑣 ∈ 𝑉 , such that 𝑟𝑒 (𝐴𝑠 (𝑒) ) ⊆ 𝐴𝑡 (𝑒) is satisfied, for
all arrows 𝑒 ∈ 𝐸 . Finally, the dimension vector of
a representation (𝑊𝑣 , 𝑣 ∈ 𝑉, 𝑟𝑒, 𝑒 ∈ 𝐸) is the tuple
𝑑 = (dim𝑘 (𝑊𝑣), 𝑣 ∈ 𝑉), and the hidden dimension vector
the tuple 𝑑ℎ = (dim𝑘 (𝑊𝑣), 𝑣 ∈ 𝑉ℎ).
Example 1.1. a) Representations of the framed quiver

• ◦

◦
are called linear dynamical systems and appear in con-
trol theory. We refer to the paper [4] for a discussion
and references.

b) The quiver

• ◦

is known as the ADHM-quiver, named after the paper
[3]. It is discussed with references to the literature in
[10], p. 349ff.

c) Armenta and Jodoin [2] introduced a large class of
framed quivers, called network quivers, to the theory of
neural networks. The toy example which will be useful
in illustrating some basic properties is ◦ −→ • −→ ◦.

We fix a vector 𝑑 = (𝑑𝑣 , 𝑣 ∈ 𝑉). Here, 𝑑𝑣 is a natural
number, 𝑣 ∈ 𝑉 . Set

Rep𝑑 (𝑄) :=
⊕
𝑒∈𝐸

Hom𝑘 (𝑘𝑑𝑠 (𝑒) , 𝑘𝑑𝑡 (𝑒) ).

This is a parameter space for representations of 𝑄 with
dimension vector 𝑑. In fact, we identify 𝑟 = (𝑟𝑒, 𝑒 ∈ 𝑉)
with the representation (𝑘𝑑𝑣 , 𝑣 ∈ 𝑉, 𝑟𝑒, 𝑒 ∈ 𝐸).

The change of basis group is

𝐺𝑑 (𝑄) :=
∏
𝑣∈𝑉ℎ

GL𝑑𝑣 (𝑘).

We also introduce

GL𝑑 (𝑄) :=
∏
𝑣∈𝑉

GL𝑑𝑣 (𝑘).

Then,

𝛼̃ : GL𝑑 (𝑄) × Rep𝑑 (𝑄) −→ Rep𝑑 (𝑄)
(𝑔, 𝑟) ↦−→ (𝑔𝑡 (𝑒) · 𝑟𝑒 · 𝑔−1

𝑠 (𝑒) , 𝑒 ∈ 𝐸),

(𝑔, 𝑟) :=
(
(𝑔𝑣 , 𝑣 ∈ 𝑉), (𝑟𝑒, 𝑒 ∈ 𝐸)

)
,

is a group action. We will use the restricted action

𝛼̃ |𝐺𝑑 (𝑄)×Rep𝑑 (𝑄) : 𝐺𝑑 (𝑄) × Rep𝑑 (𝑄) −→ Rep𝑑 (𝑄),

denoted by 𝛼, to describe and investigate the classifica-
tion problem of framed quiver representations. Indeed,
𝑟1 = (𝑟1

𝑒, 𝑒 ∈ 𝐸) and 𝑟2 = (𝑟2
𝑒, 𝑒 ∈ 𝐸) lie in the

same 𝐺𝑑 (𝑄)-orbit if and only if the representations
(𝑘𝑑𝑣 , 𝑣 ∈ 𝑉, 𝑟1

𝑒, 𝑒 ∈ 𝐸) and (𝑘𝑑𝑣 , 𝑣 ∈ 𝑉, 𝑟2
𝑒, 𝑒 ∈ 𝐸) are

isomorphic.
Since the classification of all representations of a

given dimension vector by hand is usually not feasible,
the tool of choice for studying the classification problem
is a moduli space.

2. SEMISTABLE AND STABLE
REPRESENTATIONS

We will now work over the algebraically closed field
ℂ. Note that all assertions concerning semistability and
the construction of quotients hold also true over non-
algebraically closed fields of characteristic zero. Only
the central notion of stability does not behave well under
changing the base field.

In view of our description of the classification prob-
lem in terms of the group action, the first moduli space
to consider is the categorical quotient

M◦
𝑑 (𝑄) := Rep𝑑 (𝑄)//𝐺𝑑 (𝑄).

This is an affine algebraic variety whose algebra of
regular functions is the algebra of invariant functions

ℂ[Rep𝑑 (𝑄)]𝐺𝑑 (𝑄) :={
𝐹 ∈ ℂ[Rep𝑑 (𝑄)]

��∀𝑔 ∈ 𝐺𝑑 (𝑄), ∀𝑆 ∈ Rep𝑑 (𝑄) :

𝐹
(
𝛼(𝑔, 𝑆)

)
= 𝐹 (𝑆)

}
.

Generators for this algebra were determined by Halic
and Stupariu (Theorem 1.1 in [5]). They may be obtained
as follows:

• For a hidden vertex 𝑣 ∈ 𝑉ℎ and an oriented cycle
𝑐 in the hidden quiver 𝑄, starting and ending at 𝑣,
we may assign to any representation (𝑟𝑒, 𝑒 ∈ 𝐸) ∈

The Hilbert–Mumford criterion for representations of network quivers             7



Rep𝑑 (𝑄) an endomorphism 𝑟𝑐 : ℂ𝑑𝑣 −→ ℂ𝑑𝑣 .
Clearly,

𝐹𝑐 : Rep𝑑 (𝑄) −→ ℂ

(𝑟𝑒, 𝑒 ∈ 𝐸) ↦−→ Trace(𝑟𝑐)

is an invariant function.
• For unmarked vertices 𝑣1, 𝑣2 ∈ 𝑉𝑢 and a path

inside 𝑄, beginning at 𝑣1 and ending at 𝑣2, we
may associate with any representation (𝑟𝑒, 𝑒 ∈
𝐸) ∈ Rep𝑑 (𝑄) a ℂ-linear map 𝑟𝑝 : ℂ𝑑𝑣1 −→ ℂ𝑑𝑣2 .
This can be seen as a matrix (𝑟𝑝 (𝑖, 𝑗)) 𝑖=1,...,𝑚𝑝

𝑗=1,...,𝑛𝑝
,

𝑚𝑝 := 𝑑𝑣2 , 𝑛𝑝 := 𝑑𝑣1 . Since 𝑟𝑝 is invariant under
the action of 𝐺 𝑝 (𝑄), the functions

𝛯𝑝 (𝑖, 𝑗) : Rep𝑑 (𝑄) −→ ℂ

(𝑟𝑒, 𝑒 ∈ 𝐸) ↦−→ 𝑟𝑝 (𝑖, 𝑗)

are invariant, too, 𝑖 = 1, ..., 𝑚𝑝 , 𝑗 = 1, ..., 𝑛𝑝 .
Theorem 2.1 (Halic/Stupariu). The ring of invariants
ℂ[Rep𝑑 (𝑄)]𝐺𝑑 (𝑄) is generated by the functions 𝐹𝑐, 𝑐
an oriented cycle in 𝑄, and 𝛯𝑝 (𝑖, 𝑗), 𝑖 = 1, ..., 𝑚𝑝 , 𝑗 =

1, ..., 𝑛𝑝 , 𝑝 a path in 𝑄, starting and ending at unmarked
vertices.

Example 2.2. We look at the quiver ◦ −→ • −→ ◦ and
the dimension vector (1, 1, 1). So, we are looking at the
action

ℂ★ × (ℂ ⊕ ℂ) −→ ℂ ⊕ ℂ(
𝑧, (𝑢, 𝑣)

)
−→ (𝑧−1 · 𝑢, 𝑧 · 𝑣).

The ring of invariant functions is ℂ[𝑢 · 𝑣].
Recall that, given a reductive linear algebraic group

𝐺, a vector space 𝑅, and an action 𝐺×𝑅 −→ 𝑅 of 𝐺 on
𝑅 by linear transformations, a point 𝑥 ∈ 𝑅 is semistable,
if there exists a homogeneous invariant function 𝐹 of
positive degree with 𝐹 (𝑥) ≠ 0. A polystable point is
a semistable point whose orbit is closed inside 𝑅, and
a stable point is a polystable point whose stabilizer is
finite.4

A vertex 𝑣 ∈ 𝑉 in a connected quiver is a sink, if
there is no arrow 𝑒 ∈ 𝐸 with 𝑠(𝑒) = 𝑣, and a source, if
there is no arrow 𝑒 ∈ 𝐸 with 𝑡 (𝑒) = 𝑣.5

Assumptions 2.3. We assume that the quiver 𝑄 is
connected, does not have oriented cycles nor multiple
arrows, that there are no arrows between unmarked
vertices, and that every unmarked vertex is either a sink
or a source. Since the case that all unmarked vertices
are sources has already been covered by Nakajima [8]
and Reineke [9] and this includes, by dualizing, the case
that all unmarked vertices are sinks, we will assume that
there are both sinks and sources among the unmarked
vertices.

4These definitions are equivalent to those stated in the introduction.
5Since we assume the quiver to be connected, there is, for every

vertex 𝑣 ∈ 𝑉 , an arrow starting or ending at 𝑣, unless, of course, 𝑄
is the one point quiver without arrows.

We write
𝑉𝑢 = 𝐼 ⊔𝑂

with 𝐼 the set of sources and 𝑂 the set of sinks.
Schematically, we depict our quiver in the following
way:

Let us introduce

𝐻− :=
⊕
𝑒∈𝐸:
𝑠 (𝑒) ∈𝐼

Homℂ (ℂ𝑠 (𝑒) ,ℂ𝑡 (𝑒) ),

𝐻+ :=
⊕
𝑒∈𝐸:

𝑡 (𝑒) ∈𝑂

Homℂ (ℂ𝑠 (𝑒) ,ℂ𝑡 (𝑒) ),

so that

Rep𝑑 (𝑄) = 𝐻− × Rep𝑑ℎ (𝑄) × 𝐻+.

Accordingly, we write an element of Rep𝑑 (𝑄) in the
form 𝑆 = (ℎ− , 𝑟, ℎ+) with ℎ− ∈ 𝐻− , 𝑟 = (𝑟𝑣 , 𝑣 ∈ 𝑉ℎ) ∈
Rep𝑑ℎ (𝑄), and ℎ+ ∈ 𝐻+.
Remark 2.4. This formalism reflects the fact that we
view our representations as framed representations of
the hidden quiver 𝑄. It is also convenient, because
the notions of stability for a framed representation
(ℎ− , 𝑟, ℎ+) that we will encounter are phrased in terms of
subrepresentations of the representation 𝑟 of the hidden
quiver 𝑄.

Associated with 𝑄, there is the set P of paths starting
at a vertex in 𝐼 and ending at a vertex in 𝑂. We let
𝑠′, 𝑡′ : P −→ 𝐼 ⊔ 𝑂 be the maps that assign to a path
its starting point and its target point, respectively. Using
these paths, we define

𝐻± :=
⊕
𝑝∈P

Homℂ (ℂ𝑑𝑠′ (𝑝) ,ℂ𝑑𝑡′ (𝑝) )

and a morphism

𝑋± : Rep𝑑 (𝑄) −→ 𝐻±

(ℎ− , 𝑟, ℎ+) ↦−→ ℎ±.

The space 𝐻± is zero, if P is empty. Theorem 2.1
implies that (ℎ− , 𝑟, ℎ+) is semistable if and only if
ℎ± ≠ 0.6

Remark 2.5. The morphism 𝑋± is clearly invariant under
the action of 𝐺𝑑 (𝑄), so that it induces a morphism

𝑋± : M◦
𝑑 (𝑄) −→ 𝐻±.

6Recall that we are supposing that there are no oriented cycles.
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Theorem 2.1 actually states that this morphism is a
closed embedding.

Next, let us verify this observation with the Hilbert–
Mumford criterion and also determine the stable points.
It states that a point 𝑆 = (ℎ− , 𝑟, ℎ+) ∈ Rep𝑑 (𝑄) \ {0} is
semistable if and only if

𝜇(𝜆, 𝑆) ≥ 0

holds for every one parameter subgroup 𝜆 : ℂ★ −→
𝐺𝑑 (𝑄), and stable if and only if

𝜇(𝜆, 𝑆) > 0

holds for every non-constant one parameter subgroup
𝜆 : ℂ★ −→ 𝐺𝑑 (𝑄). We refer to [10], Section 1.5.1, for
the definition of 𝜇 that we use.

We introduce the subgroup

S𝐺𝑑 (𝑄)

:=
{
(𝑔𝑣 , 𝑣 ∈ 𝑉ℎ) ∈ 𝐺𝑑 (𝑄)

�� ∏
𝑣∈𝑉ℎ

det(𝑔𝑣) = 1
}
.

The homomorphism

ℂ★ × S𝐺𝑑 (𝑄) −→ 𝐺𝑑 (𝑄)(
𝑧, (𝑔𝑣 , 𝑣 ∈ 𝑉ℎ)

)
↦−→ (𝑧 · 𝑔𝑣 , 𝑣 ∈ 𝑉ℎ)

is surjective and has finite kernel. For constructing the
quotient and determining semistable and stable points,
we may replace the group 𝐺𝑑 (𝑄) by the group ℂ★ ×
S𝐺𝑑 (𝑄).

Let us first look at one parameter subgroups of
S𝐺𝑑 (𝑄). In order to study these, it will be convenient
to use the embedding

𝜄 : S𝐺𝑑 (𝑄) ↩→ SL𝐷 (ℂ), 𝐷 :=
∑︁
𝑣∈𝑉ℎ

𝑑𝑣 .

A one parameter subgroup 𝜆 : ℂ★ −→ S𝐺𝑑 (𝑄) then
induces the one parameter subgroup 𝜄 ◦ 𝜆 of SL𝐷 (ℂ).

In order to specify 𝜆 : ℂ★ −→ S𝐺𝑑 (𝑄), we need to
specify bases (𝑤(𝑣, 1), ..., 𝑤(𝑣, 𝑑𝑣)) of ℂ𝑑𝑣 and integral
weights 𝛾(𝑣, 𝑖), 𝑖 = 1, ..., 𝑑𝑣 , 𝑣 ∈ 𝑉ℎ, such that∑︁

𝑣∈𝑉ℎ

𝑑𝑣∑︁
𝑖=1

𝛾(𝑣, 𝑖) = 0.

Next, we choose a bijection

𝛽 : { 1, ..., 𝐷 } −→ { (𝑣, 𝑖) | 𝑣 ∈ 𝑉ℎ, 𝑖 = 1, ..., 𝑑𝑣 },

such that
𝛾
(
𝛽(1)

)
≤ · · · ≤ 𝛾

(
𝛽(𝐷)

)
,

and define 𝛾1 < · · · < 𝛾𝑠+1 by the condition

{ 𝛾1, ..., 𝛾𝑠+1 } =
{
𝛾
(
𝛽(1)

)
, ..., 𝛾

(
𝛽(𝐷)

) }
as well as

𝛿 𝑗 := max
{
𝑖 | 1 ≤ 𝑖 ≤ 𝐷 ∧ 𝛾

(
𝛽(𝑖)

)
≤ 𝛾 𝑗

}
,

𝑗 = 1, ..., 𝑠 + 1, Now, set

𝕎0 := 0 and 𝕎 𝑗 :=
〈
𝑤
(
𝛽(1)

)
, ..., 𝑤

(
𝛽(𝛿 𝑗 )

) 〉
,

𝑗 = 1, ..., 𝑠 + 1. Then,

𝕎• : 𝕎0 ⊊ 𝕎1 ⊊ · · · ⊊ 𝕎𝑠 ⊊ 𝕎𝑠+1 = ℂ𝐷

is a (partial) flag in ℂ𝐷 . We also define

𝜀 𝑗 :=
𝛾 𝑗+1 − 𝛾 𝑗

𝐷
, 𝑗 = 1, ..., 𝑠, and 𝜀• := (𝜀1, ..., 𝜀𝑠).

The pair (𝕎•, 𝜀•) is the weighted flag of 𝜆. This is
the weighted flag of 𝜄 ◦ 𝜆 as defined in [10], Example
1.5.1.36.
Remark 2.6. Setting

𝛾
(𝛿 )
𝐷

:=
(
𝛿 − 𝐷, ..., 𝛿 − 𝐷︸              ︷︷              ︸

𝛿×

, 𝛿, ..., 𝛿︸ ︷︷ ︸
(𝐷−𝛿 )×

)
, 𝛿 = 1, ..., 𝐷 − 1,

we have the identity(
𝛾
(
𝛽(1)

)
, ..., 𝛾

(
𝛽(𝐷)

) )
=

𝑠∑︁
𝑗=1

𝜀 𝑗 · 𝛾 ( 𝑗 )
𝐷

. (★)

Let us first investigate 𝜇(𝜆, 𝑟), for a one parameter
subgroup 𝜆 : ℂ★ −→ S𝐺𝑑 (𝑄) and a (non-zero) represen-
tation 𝑟 = (𝑟𝑣 , 𝑣 ∈ 𝑉ℎ) ∈ Rep𝑑 (𝑄) of the hidden quiver.
The representation 𝑟 can be viewed as an endomorphism
of ℂ𝐷 ,7 and

𝜇(𝜆, 𝑟) = 𝜇(𝜄 ◦ 𝜆, 𝑟).

On the right hand side, we are dealing with the stan-
dard action of SL𝐷 (ℂ) on Endℂ (ℂ𝐷), and one readily
checks:

𝜇(𝜆, 𝑟) > 0 ⇐⇒ ∃ 𝑗 ∈ { 1, ..., 𝑠 } : 𝑟 (𝕎 𝑗 ) ⊈ 𝕎 𝑗 ,

𝜇(𝜆, 𝑟) < 0 ⇐⇒ ∀ 𝑗 ∈ { 1, ..., 𝑠 + 1 } : 𝑟 (𝕎 𝑗 ) ⊆ 𝕎 𝑗−1.

Now, there are uniquely defined subspaces 𝐴
𝑗
𝑣 ⊆ ℂ𝑑𝑣 ,

𝑣 ∈ 𝑉ℎ, 𝑗 = 0, ..., 𝑠 + 1, such that

𝕎 𝑗 =
⊕
𝑣∈𝑉ℎ

𝐴
𝑗
𝑣 , 𝑗 = 0, ..., 𝑠 + 1.

The fact that, for 𝑗 = 0, ..., 𝑠 + 1, the condition 𝑟 (𝕎 𝑗 ) ⊆
𝕎 𝑗 holds if and only if 𝐴 𝑗 := (𝐴 𝑗

𝑣 , 𝑣 ∈ 𝑉ℎ) is a subrepre-
sentation of 𝑟 follows readily from the definitions and is
crucial in order to express all the notions of semistability
and stability for framed quiver representations in terms
of subrepresentations of the representation of the hidden
quiver.

Next, let us evaluate the quantity 𝜇(𝜆, ℎ−), for a
one parameter subgroup 𝜆 : ℂ★ −→ S𝐺𝑑 (𝑄), and ℎ− ∈
𝐻− ⊆ Homℂ (ℍ− ,ℂ𝐷), ℍ− :=

⊕
𝑣∈𝐼

ℂ𝑑𝑣 . Then, with

𝛿− := min
{
𝑖
�� 1 ≤ 𝑖 ≤ 𝐷 ∧

Im(ℎ−) ⊆
〈
𝑤
(
𝛽(1)

)
, ..., 𝑤

(
𝛽(𝑖)

) 〉 }
,

we get that
𝜇(𝜆, ℎ−) = 𝛾

(
𝛽(𝛿−)

)
.

7Here, we use the assumption that we do not have multiple arrows.
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Remark 2.7. Let 𝑗𝑚 ∈ { 1, ..., 𝑠 + 1 } be minimal among
the indices 𝑗 , such that Im(ℎ−) ⊆ 𝕎 𝑗 . Then, we
obviously have

𝜇(𝜆, 𝑟) = 𝛾 𝑗𝑚 .

On the other hand, by (★), we have that

𝜇(𝜆, 𝑟) =
𝑗𝑚−1∑︁
𝑖=1

𝜀𝑖 · 𝛿𝑖 +
𝑠∑︁

𝑖= 𝑗𝑚

𝜀𝑖 · (𝛿𝑖 − 𝐷).

We also have to determine 𝜇(𝜆, ℎ+), for a one
parameter subgroup 𝜆 : ℂ★ −→ S𝐺𝑑 (𝑄), and ℎ+ ∈ 𝐻+ ⊆
Homℂ (ℂ𝐷 ,ℍ+), ℍ+ :=

⊕
𝑣∈𝑂

ℂ𝑑𝑣 . For

𝛿+ := min
{
𝑖
�� 1 ≤ 𝑖 ≤ 𝐷∧

〈
𝑤
(
𝛽(1)

)
, ..., 𝑤

(
𝛽(𝑖)

) 〉
⊈ Ker(ℎ+)

〉 }
,

we find that

𝜇(𝜆, ℎ+) = −𝛾
(
𝛽(𝛿+)

)
.

Remark 2.8. Let 𝑗𝑀 ∈ { 1, ..., 𝑠 + 1 } be minimal among
the indices 𝑗 , such that 𝕎 𝑗 ⊈ Ker(ℎ+). Then, we
obviously have

𝜇(𝜆, 𝑟) = −𝛾 𝑗𝑀 .

Moreover, (★) shows that

𝜇(𝜆, 𝑟) = −
𝑗𝑀−1∑︁
𝑖=1

𝜀𝑖 · 𝛿𝑖 +
𝑠∑︁

𝑖= 𝑗𝑀

𝜀𝑖 · (𝐷 − 𝛿𝑖).

Finally, we study one parameter subgroups of the
form

𝜆𝛾 : ℂ★ −→ ℂ★

𝑧 ↦−→ 𝑧𝛾 ,

𝛾 ∈ ℤ. This one parameter subgroup acts trivially on
Rep𝑑 (𝑄). For ℎ− ≠ 0, one has

𝜇(𝜆𝛾 , ℎ−) = 𝛾, 𝛾 ∈ ℤ,

and, for ℎ+ ≠ 0, one sees

𝜇(𝜆𝛾 , ℎ
+) = −𝛾, 𝛾 ∈ ℤ.

We are now ready to give the characterization of
stable and semistable points.

Theorem 2.9. a) A representation is semistable if and
only if the induced map ℎ± : ℍ− −→ ℍ+ is non-zero.

b) A representation 𝑟 = (ℎ− , 𝑟𝑣 , 𝑣 ∈ 𝑉ℎ, ℎ
+) ∈

Rep𝑑 (𝑄) is stable if and only if the following two
properties hold true:

1. There is no subrepresentation 𝐴 = (𝐴𝑣 , 𝑣 ∈ 𝑉ℎ) ≠
0 of the representation (𝑟𝑣 , 𝑣 ∈ 𝑉ℎ) of the hidden
quiver with

⊕
𝑣∈𝑉ℎ

𝐴𝑣 ⊆ Ker(ℎ+).

2. There is no subrepresentation 𝐴 = (𝐴𝑣 , 𝑣 ∈ 𝑉ℎ) ≠
(ℂ𝑑𝑣 , 𝑣 ∈ 𝑉ℎ) of the representation (𝑟𝑣 , 𝑣 ∈ 𝑉ℎ) of
the hidden quiver with Im(ℎ−) ⊆

⊕
𝑣∈𝑉ℎ

𝐴𝑣 .

Note that the first condition, applied to (ℂ𝑑𝑣 , 𝑣 ∈ 𝑉ℎ),
shows ℎ+ ≠ 0, and the second condition, applied to 0,
yields ℎ− ≠ 0.

Proof. a) As noted above, this result follows from Theo-
rem 2.1. Nevertheless, we will explain how to see it with
the Hilbert–Mumford criterion.8 Suppose 𝑆 = (ℎ− , 𝑟, ℎ+)
is a (non-zero) point of Rep𝑑 (𝑄). First, we study the
case that there is a one parameter subgroup (𝜆𝛾 , 𝜆) of
ℂ★ × S𝐺𝑑 (𝑄), such that

𝜇
(
(𝜆𝛾 , 𝜆), 𝑆

)
< 0.

If ℎ− , 𝑟 = (𝑟𝑣 , 𝑣 ∈ 𝑉ℎ), and ℎ+ are all non-zero, then

𝜇
(
(𝜆𝛾 , 𝜆), 𝑆

)
(★★)

= max
{
𝜇(𝜆, ℎ−) + 𝛾, 𝜇(𝜆, 𝑟), 𝜇(𝜆, ℎ+) − 𝛾

}
.

In general, only the non-zero components of 𝑆 partici-
pate in forming the maximum.

i) If 𝜆 = 0, then necessarily 𝑟 = 0. Furthermore,
ℎ− = 0, if 𝛾 > 0, and ℎ+ = 0, if 𝛾 < 0. In both cases,
ℎ± = 0.

ii) For 𝜆 ≠ 0, we look at the weighted flag (𝕎•, 𝜀•)
that this one parameter subgroup of S𝐺𝑑 (𝑄) defines in
ℂ𝐷 . If ℎ− = 0 or ℎ+ = 0, then also ℎ± = 0. In the
remaining case ℎ− ≠ 0 and ℎ+ ≠ 0, we note that, by
(★★), we must have

0 > 𝜇(𝜆, ℎ−
)
+ 𝛾 + 𝜇(𝜆, ℎ−) − 𝛾 = 𝛾 𝑗𝑚 + 𝛾 − 𝛾 𝑗𝑀 − 𝛾,

i.e.,
𝛾 𝑗𝑚 < 𝛾 𝑗𝑀 ,

or, equivalently,
𝑗𝑚 < 𝑗𝑀 .

This shows that Im(ℎ−) ⊆ 𝕎 𝑗𝑚 ⊆ Ker(ℎ+) and, so,
ℎ± = 0.

Now, we will show that 𝑆 is unstable, if ℎ± = 0.
i) In the case that 𝑆 = (ℎ− , 0, ℎ+) and ℎ− = 0,

we have 𝜇((𝜆1, 0), 𝑆) = −1 < 0. If ℎ+ = 0, then
𝜇((𝜆−1, 0), 𝑆) = −1 < 0.

ii) Suppose first that ℎ+ = 0 and 𝑟 ≠ 0.9 Since we
assume that 𝑄 has no oriented cycles, the representation
𝑟, viewed as an endomorphism of ℂ𝐷 , is nilpotent. Let
𝑠 be the largest natural number with 𝑟𝑠 ≠ 0. Then, we
form the flag

𝕎• : 0 ⊊ 𝑟𝑠 (ℂ𝐷) ⊊ · · · ⊊ 𝑟 (ℂ𝐷) ⊊ ℂ𝐷 .

Pick a one parameter subgroup 𝜆 : ℂ★ −→ S𝐺𝑑 (𝑄)
whose weighted flag is of the form (𝕎•, 𝜀•). By a
previous remark, 𝜇(𝜆, 𝑟) < 0. If ℎ− = 0, we are
done. Otherwise, choose an integer 𝛾 > 𝜇(𝜆, ℎ−). Then,
𝜇(𝜆, ℎ−) − 𝛾 < 0. In view of (★★), the pair (𝜆𝛾 , 𝜆)
constitutes a destabilizing one parameter subgroup. We
proceed in a similar manner, if ℎ− = 0.

8The determination of the one parameter subgroups that act with
negative and zero weight is also necessary in order to understand
the notion of semistability with respect to a linearization obtained by
modifying the standard representation by a character of 𝐺𝑑 (𝑄) .

9Otherwise we may apply Part i) of the argument.
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Finally, if ℎ− ≠ 0 and ℎ+ ≠ 0, let 𝑠 be the
maximal natural number with 𝑟𝑠 (Im(ℎ−)) ≠ 0 and 𝕎𝑠

the subrepresentation generated by 𝕀 := Im(ℎ−), i.e.,

𝕎𝑠 :=
𝑠∑︁
𝑖=0

𝑟 𝑖 (𝕀).

We have 𝕎𝑠 ≠ ℂ𝐷 , because ℎ+ ≠ 0 and ℎ± = 0. We
further set

𝕎𝑠− 𝑗 := 𝑟 𝑗 (𝕎𝑠) =
𝑠∑︁

𝑖= 𝑗

𝑟 𝑖 (𝕀), 𝑗 = 1, ..., 𝑠.

Then,

𝕎• : 0 =: 𝕎0 ⊊ 𝕎1 ⊊ · · · ⊊ 𝕎𝑠 ⊊ 𝕎𝑠+1 := ℂ𝐷

is a flag in ℂ𝐷 , such that

• 𝑟 (𝕎 𝑗 ) ⊆ 𝕎 𝑗−1, 𝑗 = 1, ..., 𝑠 + 1,
• 𝕎𝑠 ⊆ Ker(ℎ+), because ℎ± = 0, and
• Im(ℎ−) ⊆ 𝕎𝑠 , by construction.

We are still free to choose the vector 𝜀• of weights in
ℤ[1/𝐷]. Once we have decided for such a weight vector
and fixed a one parameter subgroup 𝜆 of S𝐺𝑑 (𝑄) whose
weighted flag is (𝑊•, 𝜀•), then 𝜇(𝜆, 𝑟) < 0, by the first
property of 𝕎•. The 𝑠-th summand in the formula for
𝜇(𝜆, ℎ+) in Remark 2.8 is the negative number −𝜀𝑠 ·
dim𝑘 (𝕎𝑠), because of the second property of 𝕎•, and
the 𝑠-th summand in the formula for 𝜇(𝜆, ℎ−) in Remark
2.7 is the negative number 𝜀𝑠 · (dim𝑘 (𝕎𝑠) − 𝐷), by the
third property of 𝕎•. So, if we choose 𝜀𝑠 large with
respect to 𝜀1, ..., 𝜀𝑠−1, both 𝜇(𝜆, ℎ−) and 𝜇(𝜆, ℎ+) will
be negative, too, so that 𝜇((0, 𝜆), 𝑆) < 0, by (★★), and
we have verified that 𝑆 is unstable.

b) If 𝑆 = (ℎ− , 𝑟, ℎ+) is stable and, so, semistable,
then there is no subrepresentation 𝐴 with Im(ℎ−) ⊆
𝐴 ⊆ Ker(ℎ+), because this would imply ℎ± = 0. Now,
suppose that 𝐴 = (𝐴𝑣 , 𝑣 ∈ 𝑉ℎ) is a subrepresentation
with 𝕎 (𝐴) ⊆ Ker(𝑟), 𝕎 (𝐴) :=

⊕
𝑣∈𝑉ℎ

𝐴𝑣 . Then, we

choose a one parameter subgroup 𝜆 : ℂ★ −→ S𝐺𝑑 (𝑄),
such that its weighted flag is ((0 ⊊ 𝕎 (𝐴) ⊊ ℂ𝐷), (1)).
By Remark 2.8, we have

𝜇(𝜆, ℎ+) = −𝛿, 𝛿 := dim𝑘

(
𝕎 (𝐴)

)
.

Since Im(ℎ−) ⊈ 𝕎 (𝐴), it follows that

𝜇(𝜆, ℎ−) = 𝛿,

using Remark 2.7. So, we infer that

𝜇
(
(𝜆−𝛿 , 𝜆), 𝑆

)
= 0.

In the same way, we may rule out the existence of a
subrepresentation 𝐴 with Im(𝑟) ⊆ 𝕎 (𝐴). So, a stable
representation satisfies Conditions 1. and 2.

Now, let us assume that 𝑆 = (ℎ− , 𝑟, ℎ+) satisfies
Conditions 1. and 2. Applying the first condition to
the trivial subrepresentation and the second one to the
whole representation clearly implies ℎ− ≠ 0 and ℎ+ ≠ 0,

respectively. Let (𝜆𝛾 , 𝜆) be a one parameter subgroup
of ℂ★ × S𝐺𝑑 (𝑄). Then, in our previous conventions,
Condition 1. and Remark 2.8 show

𝜇(𝜆, ℎ+) = −𝛾1 ≥ 0,

and Condition 2. and Remark 2.8 imply

𝜇(𝜆, ℎ−) = 𝛾𝑠+1 ≥ 0.

So, if 𝛾 < 0, then

𝜇(𝜆, ℎ+) − 𝛾 = −𝛾1 − 𝛾 > 0,

and, if 𝛾 ≥ 0, then

𝜇(𝜆, ℎ−) = 𝛾𝑠+1 + 𝛾 > 0.

Here, we use that, if 𝛾 = 0, then 𝜆 ≠ 0 and, so, 𝛾𝑠+1 > 0.
In view of (★★), we infer that 𝑆 is stable. □

CONCLUSION
We evaluated the Hilbert–Mumford criterion di-

rectly on the space of framed representations of a
network quiver in order to recover a characteriza-
tion of semistable and stable framed representations of
such quivers found by Armenta, Brüstle, Hassoun, and
Reineke. This criterion can be used to establish the
existence of stable representations and to compute the
dimension of the resulting moduli space. As we will ex-
plain in forthcoming work, the dimension of the moduli
space of framed representations whose dimension vector
consists only of ones agrees with a certain invariant for
measuring the complexity of a neural network. This ob-
servation illustrates the potential of the investigation of
moduli spaces in the study of the theoretical foundations
of neural networks and machine learning.
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